1个回答
展开全部
∫(0->1/2) arccosx dx
= x * arccosx - ∫(0->1/2) x d(arccosx)
= (1/2) * arccos(1/2) - ∫(0->1/2) x * -1/√(1-x²) dx
= π/6 + (1/2)∫(0->1/2) 1/√(1-x²) d(x²)
= π/6 - (1/2)∫(0->1/2) 1/√(1-x²) d(1-x²)
= π/6 - (1/2) * 2√(1-x²)
= π/6 - [√(1-(1/2)²) - 1]
= 1 - √3/2 + π/6
= x * arccosx - ∫(0->1/2) x d(arccosx)
= (1/2) * arccos(1/2) - ∫(0->1/2) x * -1/√(1-x²) dx
= π/6 + (1/2)∫(0->1/2) 1/√(1-x²) d(x²)
= π/6 - (1/2)∫(0->1/2) 1/√(1-x²) d(1-x²)
= π/6 - (1/2) * 2√(1-x²)
= π/6 - [√(1-(1/2)²) - 1]
= 1 - √3/2 + π/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询