展开全部
第一种
解:分别过点E,F作平行线EG,FH,使AB‖EG‖FH‖CD
∵AB‖EG,∴∠1=∠BEG
∵EG‖FH,∴∠GEF=∠EFH
∵FH‖CD,∴∠HFC=∠2
∵∠E=∠BEG+∠GEF,∠F=∠EFH+∠HFC
∴∠E=∠1+GEF,∠F=∠GEF+∠2
又∵∠1=∠2
∴∠E=∠F
第二种
解:连接BC交EF于M
∵AB‖CD,∴∠ABC=∠BCD
又∵∠1=∠2,∴∠EBC=∠FCB
又∵∠EMB和∠FMC为对顶角。即∠EMB=∠FMC
∴∠E=∠F
解:分别过点E,F作平行线EG,FH,使AB‖EG‖FH‖CD
∵AB‖EG,∴∠1=∠BEG
∵EG‖FH,∴∠GEF=∠EFH
∵FH‖CD,∴∠HFC=∠2
∵∠E=∠BEG+∠GEF,∠F=∠EFH+∠HFC
∴∠E=∠1+GEF,∠F=∠GEF+∠2
又∵∠1=∠2
∴∠E=∠F
第二种
解:连接BC交EF于M
∵AB‖CD,∴∠ABC=∠BCD
又∵∠1=∠2,∴∠EBC=∠FCB
又∵∠EMB和∠FMC为对顶角。即∠EMB=∠FMC
∴∠E=∠F
展开全部
解:分别过点E,F作平行线EG,FH,使AB‖EG‖FH‖CD
∵AB‖EG,∴∠1=∠BEG
∵EG‖FH,∴∠GEF=∠EFH
∵FH‖CD,∴∠HFC=∠2
∵∠E=∠BEG+∠GEF,∠F=∠EFH+∠HFC
∴∠E=∠1+GEF,∠F=∠GEF+∠2
又∵∠1=∠2
∴∠E=∠F
连接BC交EF于M
∵AB‖CD,∴∠ABC=∠BCD
又∵∠1=∠2,∴∠EBC=∠FCB
又∵∠EMB和∠FMC为对顶角。即∠EMB=∠FMC
∴∠E=∠F
∵AB‖EG,∴∠1=∠BEG
∵EG‖FH,∴∠GEF=∠EFH
∵FH‖CD,∴∠HFC=∠2
∵∠E=∠BEG+∠GEF,∠F=∠EFH+∠HFC
∴∠E=∠1+GEF,∠F=∠GEF+∠2
又∵∠1=∠2
∴∠E=∠F
连接BC交EF于M
∵AB‖CD,∴∠ABC=∠BCD
又∵∠1=∠2,∴∠EBC=∠FCB
又∵∠EMB和∠FMC为对顶角。即∠EMB=∠FMC
∴∠E=∠F
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不知道这是哪的题?不过可以做一条辅助线,就是竖着做一条,把原题的五条都连起来,分别交于G,H,Q,M,N,因为AB平行于CD所以有角BGH等于角CNM,又因为角1等于角2所以角BHG等于角CMN,又因为对顶角相等,所以角EGQ等于角FMQ,(到这也可以用三角形内角和来求)所以BE平行于CF,所以角E等于角F,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询