设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=

设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=根号7乘a,则双曲线的渐近... 设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=根号7乘a,则双曲线的渐近线方程为? 展开
ahtax168
2011-12-26
知道答主
回答量:21
采纳率:0%
帮助的人:5.6万
展开全部
设|PF1|=x,|PF2|=y,且x>y
则x-y=2a
由余弦定理 1/2 = (x² + y² - 4c²)/(2xy)
x² + y² - xy = 4c²
中线长公式OP² = 1/2(PF1² + PF2² - 1/2F1F2²)
7a² = 1/2(x² + y² - 2c²)
∴xy = 4b²
x² + y² = 4(b²+c²)
7a² = 2(b² + c²) - c²
2a² = b²
渐进线方程为x²/a²=y²/b
即y²=2x² (D)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式