如何运用第二类曲面积分中的对称性
展开全部
这时我有一次回答别人的问题,建议你看看,中心意思就是第二型的不建议用对称性,化为第一类的才能用对称性。
第二型曲面曲线积分都不要随便用对称性,因为积分的定义是与方向有关的,积分值不是简单的Riemann和的极限,写成上面的记号只是为了方便记忆,不是说这是真的积分。它的计算是有另外的计算公式,即使积分区域对称,被积函数是奇函数积分值一般也不是0。第一型的可以用对称性。
就是说,第二型曲面积分我们是有定义的(物理上就是流量问题),它的计算是转化为一个二重积分进行计算,因此我们用二重积分的符号表示第二型曲面积分。但这只是一个符号,不是真的二重积分,也就没有二重积分的那些性质,比如对称性就没有。说白了,一开始讲定义的时候我们也可以不用二重积分的符号表示第二型曲面积分,而是用别的记号,都没问题,第二型曲面积分只是借用二重积分的符号,是个舶来品。当然,最后的计算还是要归结到二重积分的计算上面。
第二型曲面曲线积分都不要随便用对称性,因为积分的定义是与方向有关的,积分值不是简单的Riemann和的极限,写成上面的记号只是为了方便记忆,不是说这是真的积分。它的计算是有另外的计算公式,即使积分区域对称,被积函数是奇函数积分值一般也不是0。第一型的可以用对称性。
就是说,第二型曲面积分我们是有定义的(物理上就是流量问题),它的计算是转化为一个二重积分进行计算,因此我们用二重积分的符号表示第二型曲面积分。但这只是一个符号,不是真的二重积分,也就没有二重积分的那些性质,比如对称性就没有。说白了,一开始讲定义的时候我们也可以不用二重积分的符号表示第二型曲面积分,而是用别的记号,都没问题,第二型曲面积分只是借用二重积分的符号,是个舶来品。当然,最后的计算还是要归结到二重积分的计算上面。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询