3个回答
展开全部
证明:因为AB=AC AE=AD 所以角B=角C 角E=角ADE 角BAC=角E+角ADE
由三角形ABC的内角和定理得到 角B+角C + 角E+角ADE =180度 即:2角B+2角E=180
故角E+B=90度
所以DE⊥BC
由三角形ABC的内角和定理得到 角B+角C + 角E+角ADE =180度 即:2角B+2角E=180
故角E+B=90度
所以DE⊥BC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
http://zhidao.baidu.com/question/117067044.html?an=0&si=3
延长DE交BC于H
∵AB=AC
∴∠B=∠C
∵AD=AE
∴∠D=∠AED
∵∠BAC+∠B+∠C=180°,又∠BAC=∠D+∠AED
∴2∠D+2∠B=180°
∴∠B+∠D=90°
∴∠EHC=∠B+∠D=90°
∴DE⊥BC
延长DE交BC于H
∵AB=AC
∴∠B=∠C
∵AD=AE
∴∠D=∠AED
∵∠BAC+∠B+∠C=180°,又∠BAC=∠D+∠AED
∴2∠D+2∠B=180°
∴∠B+∠D=90°
∴∠EHC=∠B+∠D=90°
∴DE⊥BC
参考资料: http://zhidao.baidu.com/question/331050084.html?fr=qrl&cid=983&index=1&fr2=query
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询