初中应用题

为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50... 为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.
(1)问符合题意的组建方案有几种?请你帮学校设计出来;
(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?
速求!快!!
展开
 我来答
q5462950
2011-12-27 · TA获得超过11.3万个赞
知道大有可为答主
回答量:5339
采纳率:71%
帮助的人:2043万
展开全部
解:(1)设组建中型图书角x个,则组建小型图书角为(30-x)个.
由题意,得,
解这个不等式组, 80x+30(30-x)≤1900;50x+60(30-x)≤1620

18≤x≤20.
由于x只能取整数,
∴x的取值是18,19,20.
当x=18时,30-x=12;
当x=19时,30-x=11;
当x=20时,30-x=10.
故有三种组建方案:
方案一,组建中型图书角18个,小型图书角12个;
方案二,组建中型图书角19个,小型图书角11个;
方案三,组建中型图书角20个,小型图书角10个.
(2)方法一:由于组建一个中型图书角的费用大于组建一个小型图书角的费用,因此组建中型图书角的数量越少,费用就越低,故方案一费用最低,
最低费用是860×18+570×12=22320(元).
方法二:①方案一的费用是:860×18+570×12=22320(元);
②方案二的费用是:860×19+570×11=22610(元);
③方案三的费用是:860×20+570×10=22900(元).
故方案一费用最低,最低费用是22320元.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式