线性代数 向量组线性相关的充要条件是什么?
求出α1=(2,2,4,a)α2=(-1,0,2,b)α3=(3,2,2,c)α4=(1,6,7,d)线性相关的充分必要条件我本来想带进去算他们系数行列式的可是算了发现不...
求出 α1=(2,2,4,a) α2=(-1,0,2,b) α3=(3,2,2,c) α4=(1,6,7,d) 线性相关的充分必要条件 我本来想带进去算他们系数行列式的 可是算了 发现不大可能 还有没有什么办法啊 谢谢大家了~~~
展开
3个回答
展开全部
将这四个向量作为四个行向量写成4乘4的矩阵形式,再通过初等行变换将其变为梯形矩阵,最后应该可化为上三角矩阵,则要使原来四个向量线性相关的充要条件是该上三角矩阵中最后一行的最右边的一个元素为0。
最后可化为 2 2 4 a
0 5 5 d-a/2
0 0 -3 c+d/5-8/(5a)
0 0 0 b+c-a
即充要条件应该是b+c-a=0
α_1,α_2,α_3,,,α_m线性无关等价于R(α_1,α_2,α_3,,,α_m)=m,反之如果α_1,α_2,α_3,,,α_m线性相关等价于R(α_1,α_2,α_3,,,α_m)<m。
扩展资料:
含有相同向量的向量组必线性相关。增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)【局部相关,整体相关】
一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。
一个向量组线性相关,则在相同位置处都去掉一个分量后得到的新向量组仍线性相关。
若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。
参考资料来源:百度百科-线性相关
展开全部
n个n维向量线性相关的充分必要条件是它们构成的行列式等于0
|α1;α2;α3;α4| = 按行向量构造行列式
2 2 4 a
-1 0 2 b
3 2 2 c
1 6 7 d
= 30(-a+b+c).
所以向量组线性相关的充分必要条件是 a=b+c.
|α1;α2;α3;α4| = 按行向量构造行列式
2 2 4 a
-1 0 2 b
3 2 2 c
1 6 7 d
= 30(-a+b+c).
所以向量组线性相关的充分必要条件是 a=b+c.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
试试化成阶梯矩阵
根据最后一行全是0求出系数之间的关系
根据最后一行全是0求出系数之间的关系
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |