已知tan(α+π/4)=-3,α∈(o,π/2)求tanα的值,求(2α-π/3)的值./?
展开全部
tan(α+π/4)=-3=[tanα+1]/(1-tanα)
解得tanα=2。而α∈(o,π/2),故α=tan(^-1) (2),则
π/3=tan(^-1) (√3)<α=tan(^-1) (2)<tan(^-1) (2+√3)=5π/12,于是
π/3<2α-π/3<π/2
而tan2α=2tanα/[1-(tanα)^2]=2*2/(1-2^2)=-4/3,则
tan(2α-π/3)=(tan2α-tanπ/3)/(1+tan2αtanπ/3)=(-4/3-√3)/(1-4/3*√3)=(48+25√3)/39
故2α-π/3=tan(^-1) [(48+25√3)/39]
解得tanα=2。而α∈(o,π/2),故α=tan(^-1) (2),则
π/3=tan(^-1) (√3)<α=tan(^-1) (2)<tan(^-1) (2+√3)=5π/12,于是
π/3<2α-π/3<π/2
而tan2α=2tanα/[1-(tanα)^2]=2*2/(1-2^2)=-4/3,则
tan(2α-π/3)=(tan2α-tanπ/3)/(1+tan2αtanπ/3)=(-4/3-√3)/(1-4/3*√3)=(48+25√3)/39
故2α-π/3=tan(^-1) [(48+25√3)/39]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询