2个回答
展开全部
∫e^(x^2-x)dx
=(1/e^(1/4)) ∫e^(x^2-x+1/4)dx
=e^(-1/4)∫e^(x-1/2)^2d(x-1/2)
(x-1/2)=u
=e^(-1/4)∫e^u^2du
=e^(-1/4)∫de^u^2/2u
=e^(-1/4)[e^u^2/2u+∫e^u^2du/2u^2]
=e^(-1/4)[e^u^2/2u+∫de^u^2/2^2u^3]
=e^(-1/4)[e^u^2/2u+e^u^2/4u^3+∫3e^u^2du/4u^4]
=e^(-1/4)[e^u^2/2u+e^u^2/4u^3+3e^u^2/8u^5+3*5∫e^u^2du/8u^6]
=e^(-1/4)[e^u^2/2u+e^u^2/4u^3+3e^u^2/8u^5+3*5*e^u^2/16u^7+...+3*5*..*(2n-3)e^u^2/(2^n*u^(2n-1)]
=e^(-1/4)e^(x-1/2)^2[1/[2(x-1/2)]+1/[4(x-1/2)^3]+3/[8(x-1/2)^5]+...+3*5*...*(2n-3)/[2^n *(x-1/2)^(2n-1)] ] n→∞
=(1/e^(1/4)) ∫e^(x^2-x+1/4)dx
=e^(-1/4)∫e^(x-1/2)^2d(x-1/2)
(x-1/2)=u
=e^(-1/4)∫e^u^2du
=e^(-1/4)∫de^u^2/2u
=e^(-1/4)[e^u^2/2u+∫e^u^2du/2u^2]
=e^(-1/4)[e^u^2/2u+∫de^u^2/2^2u^3]
=e^(-1/4)[e^u^2/2u+e^u^2/4u^3+∫3e^u^2du/4u^4]
=e^(-1/4)[e^u^2/2u+e^u^2/4u^3+3e^u^2/8u^5+3*5∫e^u^2du/8u^6]
=e^(-1/4)[e^u^2/2u+e^u^2/4u^3+3e^u^2/8u^5+3*5*e^u^2/16u^7+...+3*5*..*(2n-3)e^u^2/(2^n*u^(2n-1)]
=e^(-1/4)e^(x-1/2)^2[1/[2(x-1/2)]+1/[4(x-1/2)^3]+3/[8(x-1/2)^5]+...+3*5*...*(2n-3)/[2^n *(x-1/2)^(2n-1)] ] n→∞
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询