定积分在区间[0,π/2]∫[1/1+(tanx)^√2]dx
1个回答
展开全部
注意一个结论:∫[0,π/2] f(sinx)dx=∫[0,π/2] f(cosx)dx (定积分换元法那里的一道例题)
则 ∫[0,π/2] f(sinx)dx=1/2[∫[0,π/2] f(sinx)dx+∫[0,π/2] f(cosx)dx]
∫[0,π/2][1/1+(tanx)^√2]dx
=∫[0,π/2][(cosx)^√2/[(cosx)^√2+(sinx)^√2]dx
=1/2{ ∫ [0,π/2][(cosx)^√2/[(cosx)^√2+(sinx)^√2]dx+∫[0,π/2] [(sinx)^√2/[(cosx)^√2+(sinx)^√2]dx }
=1/2∫[0,π/2] 1dx
=π/4
则 ∫[0,π/2] f(sinx)dx=1/2[∫[0,π/2] f(sinx)dx+∫[0,π/2] f(cosx)dx]
∫[0,π/2][1/1+(tanx)^√2]dx
=∫[0,π/2][(cosx)^√2/[(cosx)^√2+(sinx)^√2]dx
=1/2{ ∫ [0,π/2][(cosx)^√2/[(cosx)^√2+(sinx)^√2]dx+∫[0,π/2] [(sinx)^√2/[(cosx)^√2+(sinx)^√2]dx }
=1/2∫[0,π/2] 1dx
=π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询