定积分在区间[0,π/2]∫[1/1+(tanx)^√2]dx

丘冷萱Ad
2011-12-29 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3860万
展开全部
注意一个结论:∫[0,π/2] f(sinx)dx=∫[0,π/2] f(cosx)dx (定积分换元法那里的一道例题)
则 ∫[0,π/2] f(sinx)dx=1/2[∫[0,π/2] f(sinx)dx+∫[0,π/2] f(cosx)dx]

∫[0,π/2][1/1+(tanx)^√2]dx
=∫[0,π/2][(cosx)^√2/[(cosx)^√2+(sinx)^√2]dx
=1/2{ ∫ [0,π/2][(cosx)^√2/[(cosx)^√2+(sinx)^√2]dx+∫[0,π/2] [(sinx)^√2/[(cosx)^√2+(sinx)^√2]dx }
=1/2∫[0,π/2] 1dx
=π/4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式