大学数学:双曲函数到底有什么用?
2个回答
2013-12-01
展开全部
双曲函数出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程。
-------------------
双曲余弦函数有着广泛的实际应用。它就存在于我们的身边。在公园里或街道旁,常能看见成排的水泥柱子之间两两连以铁链,你是否想过自然下垂的铁链形状是什么曲线?
也许你怎么看都会想到抛物线。其实,你只是重复了历史上数学家的错误而已。17世纪意大利著名天文学家伽利略(G. Galileo, 1564~1642)、荷兰著名数学家吉拉尔(A. Girard, 1595~1632)都曾误认为链条的曲线是抛物线。连雅各·伯努利这样的一流数学家都一筹莫展。后来,德国大数学家莱布尼茨(G. W. Leibniz, 1646~1716)正确地给出了铁链的曲线方程,一条双曲余弦曲线。接着,雅各·伯努利的弟弟约翰·伯努利(John Bernoulli, 1667~1748)也成功解决了悬链线问题。
法国著名昆虫学家法布尔(J. H. Fabre, 1823~1915)在其《昆虫记》一书第九卷中有一段文字专门讲e这个神奇的数:
-------------------
双曲余弦函数有着广泛的实际应用。它就存在于我们的身边。在公园里或街道旁,常能看见成排的水泥柱子之间两两连以铁链,你是否想过自然下垂的铁链形状是什么曲线?
也许你怎么看都会想到抛物线。其实,你只是重复了历史上数学家的错误而已。17世纪意大利著名天文学家伽利略(G. Galileo, 1564~1642)、荷兰著名数学家吉拉尔(A. Girard, 1595~1632)都曾误认为链条的曲线是抛物线。连雅各·伯努利这样的一流数学家都一筹莫展。后来,德国大数学家莱布尼茨(G. W. Leibniz, 1646~1716)正确地给出了铁链的曲线方程,一条双曲余弦曲线。接着,雅各·伯努利的弟弟约翰·伯努利(John Bernoulli, 1667~1748)也成功解决了悬链线问题。
法国著名昆虫学家法布尔(J. H. Fabre, 1823~1915)在其《昆虫记》一书第九卷中有一段文字专门讲e这个神奇的数:
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询