已知函数f(x)=x^2+1,且g(x)=f[f(x)],G(x)=g(x)-af(x)

已知函数f(x)=x^2+1且g(x)=f[f(x)],G(x)=g(x)-af(x).试问是否存在实数a使得G(x)在(负无穷,-1)上为减函数,并且在(-1,0)上为... 已知函数f(x)=x^2+1且g(x)=f[f(x)],G(x)=g(x)-af(x).试问是否存在实数a使得G(x)在(负无穷,-1)上为减函数,并且在(-1,0)上为增函数? 展开
暖眸敏1V
推荐于2016-12-01 · TA获得超过9.6万个赞
知道大有可为答主
回答量:1.8万
采纳率:90%
帮助的人:9572万
展开全部
G(x)=g(x)-af(x)=(x^2+1)²+1-a(x²+1)=x⁴+(2-a)x²+1-a
G'(x)=4x³+2(2-a)x
若G(x)在(负无穷,-1)上为减函数,并且在(-1,0)上为增函数
则G'(-1)=0,即 -4-2(2-a)=0,a=4
此时G'(x)=4x³-4)x=4x(x+1)(x-1)
x∈(-∞,,-1) 时 G'(x)<0,G(x)为减函数
x∈(-1,0) 时 G'(x)>0,G(x)为增函数
所以,存在实数a=4使得G(x)在(负无穷,-1)上为
减函数,并且在(-1,0)上为增函数.
追问
G(x)应该=x^4+(2-a)x^2+2-a啊
追答
确实,电脑屏幕花眼,漏掉了,见谅,不影响后面的推理
G(x)=g(x)-af(x)=(x^2+1)²+1-a(x²+1)=x⁴+(2-a)x²+2-a
G'(x)=4x³+2(2-a)x
若G(x)在(负无穷,-1)上为减函数,并且在(-1,0)上为增函数
则G'(-1)=0,即 -4-2(2-a)=0,a=4
此时G'(x)=4x³-4)x=4x(x+1)(x-1)
x∈(-∞,,-1) 时 G'(x)0,G(x)为增函数
所以,存在实数a=4使得G(x)在(负无穷,-1)上为
减函数,并且在(-1,0)上为增函数.
wenjin168168
2011-12-30
知道答主
回答量:10
采纳率:0%
帮助的人:10万
展开全部
由题意得G(x)=(x^2+1)^2+1-a(x^2+1) 求G(x)的导数,令G(x)的导数等于0,解得X=? 问号里含a了,然后X=?=1,就可求得a,求不出来就是没有实数a,不知我的理解能让你明白不?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式