由二重积分几何意义,∫∫√(1-x^2-y^2)dxdy= ,其中D={(x,y)| x^2+y^2 <=1, x,y>=0}
由二重积分几何意义,∫∫√(1-x^2-y^2)dxdy=________,其中D={(x,y)|x^2+y^2<=1,x,y>=0}比较大小∫∫In(x^2+y^2)d...
由二重积分几何意义,∫∫√(1-x^2-y^2)dxdy= ________,其中D={(x,y)| x^2+y^2 <=1,x, y>=0}
比较大小 ∫∫In(x^2+y^2)dxdy___∫∫[In(x^2+y^2)]^3dxdy。D:e≤x^2+y^2≤2e
求过程 谢谢! 展开
比较大小 ∫∫In(x^2+y^2)dxdy___∫∫[In(x^2+y^2)]^3dxdy。D:e≤x^2+y^2≤2e
求过程 谢谢! 展开
2个回答
展开全部
1,在D上的二重积分∫∫f(x,y)dxdy的几何意义是,以D为底,以曲面z=f(x,y)为顶的曲顶柱体的体积,本题中根据被积函数和积分区域,可以看出这个积分表示球体x^2+y^2+z^2=1在第一卦限内部分的体积,因此积分=π/6。
2,由于两个积分的积分区域相同,只要比较被积函数在D上的大小即可,由e≤x^2+y^2≤2e可知ln(x^2+y^2)≥1,因此In(x^2+y^2)≤∫[In(x^2+y^2)]^3,即∫∫In(x^2+y^2)dxdy≤∫∫[In(x^2+y^2)]^3dxdy。
2,由于两个积分的积分区域相同,只要比较被积函数在D上的大小即可,由e≤x^2+y^2≤2e可知ln(x^2+y^2)≥1,因此In(x^2+y^2)≤∫[In(x^2+y^2)]^3,即∫∫In(x^2+y^2)dxdy≤∫∫[In(x^2+y^2)]^3dxdy。
展开全部
1D二重积∫∫f(x,y)dxdy几何意义D底曲面z=f(x,y)顶曲顶柱体体积本题根据积函数积区域看积表示球体x^2+y^2+z^2=1第卦限内部体积积=π/6
2由于两积积区域相同要比较积函数D即由e≤x^2+y^2≤2e知ln(x^2+y^2)≥1In(x^2+y^2)≤∫[In(x^2+y^2)]^3即∫∫In(x^2+y^2)dxdy≤∫∫[In(x^2+y^2)]^3dxdy
2由于两积积区域相同要比较积函数D即由e≤x^2+y^2≤2e知ln(x^2+y^2)≥1In(x^2+y^2)≤∫[In(x^2+y^2)]^3即∫∫In(x^2+y^2)dxdy≤∫∫[In(x^2+y^2)]^3dxdy
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |