各位大神帮忙啊……
1个回答
展开全部
解:(1)系统以5m/s2的加速度向左加速运动,根据牛顿第二定律,有:
竖直方向:Ncos37°+Tsin37°=mg,即Ncos37°=mg-Tsin37°
水平方向:Nsin37°-Tcos37°=ma,即Nsin37°=ma+Tcos37°
两式相除:tan37°=ma+Tcos37°/mg−Tsin37
解得:T=0.2N>0,能相对斜面静止;
(2)系统以10m/s2的加速度向右加速运动,先假设不会飘起来,根据牛顿第二定律,有:
竖直方向:Ncos37°+Tsin37°=mg,即Ncos37°=mg-Tsin37°
水平方向:Tcos37°-Nsin37°=ma,即Nsin37°=Tcos37°-ma
两式相除:tan37°=Tcos37°- ma/ma-Tsin37°
解得:T=1.4N,N=0.2N>0,故不会飘起来.
:(1)系统以5m/s2的加速度向左加速运动时,绳子受到的拉力为0.2N;
(2)系统以l0m/s2的加速度向右加速运动,绳子受到的拉力为1.4N.
(3)类似。= =
竖直方向:Ncos37°+Tsin37°=mg,即Ncos37°=mg-Tsin37°
水平方向:Nsin37°-Tcos37°=ma,即Nsin37°=ma+Tcos37°
两式相除:tan37°=ma+Tcos37°/mg−Tsin37
解得:T=0.2N>0,能相对斜面静止;
(2)系统以10m/s2的加速度向右加速运动,先假设不会飘起来,根据牛顿第二定律,有:
竖直方向:Ncos37°+Tsin37°=mg,即Ncos37°=mg-Tsin37°
水平方向:Tcos37°-Nsin37°=ma,即Nsin37°=Tcos37°-ma
两式相除:tan37°=Tcos37°- ma/ma-Tsin37°
解得:T=1.4N,N=0.2N>0,故不会飘起来.
:(1)系统以5m/s2的加速度向左加速运动时,绳子受到的拉力为0.2N;
(2)系统以l0m/s2的加速度向右加速运动,绳子受到的拉力为1.4N.
(3)类似。= =
庭田科技
2024-11-14 广告
2024-11-14 广告
LMS Test.Lab 是一款测试分析软件,专为物理测量和动态测试需求设计,广泛应用于噪声、振动和耐久性(NVH)分析。LMS Test.Lab集成了数据采集、信号处理和多种分析工具,能够帮助工程师在产品设计和测试过程中高效识别并解决振动...
点击进入详情页
本回答由庭田科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询