关于二次函数问题 急急急急
二次函数y=ax2+bx+c过点A、B两点(A左B右),且分布在y轴两侧,且OA、OB的长是方程x2-5x+4=0的两根,且OA>OB,与y轴交于点C(0,4).(1)求...
二次函数y=ax2+bx+c过点A、B两点(A左B右),且分布在y轴两侧,且OA、OB的长是方程x2-5x+4=0的两根,且OA>OB,与y轴交于点C(0,4).
(1)求4a-2b+c的值;
(2)连接AC、BC,P是线段AB上一动点,且AP=m,过点P作PM∥AC,交BC于M,当m为何值时,S△PCM的面积最大,并求出这个最大值;
(3)△ABC外接圆的面积是 (直接写出答案,结果保留π)
第三个解答过程也要 展开
(1)求4a-2b+c的值;
(2)连接AC、BC,P是线段AB上一动点,且AP=m,过点P作PM∥AC,交BC于M,当m为何值时,S△PCM的面积最大,并求出这个最大值;
(3)△ABC外接圆的面积是 (直接写出答案,结果保留π)
第三个解答过程也要 展开
展开全部
(1)解:∵OA、OB的长是方程x2-5x+4=0的两根,且OA>OB,
∴OA=4,OB=1,
∵二次函数y=ax2+bx+c过点A、B两点(A左B右),且分布在y轴两侧,
∴A(-4,0),B(1,0),设抛物线的解析式是y=a(x-1)(x+4),
把C(0,4)代入得:4=a(0-1)(0+4),
a=-1,
∴y=-(x-1)(x+4)=-x2-3x+4,
4a-2b+c=4×(-1)-2×(-3)+4=6,
答:4a-2b+c的值是6;
(2)解:∵AP=m,
∴PB=5-m,
∵PM∥AC,
∴△PBM∽△ABC,
∴
S△PBM
S△ABC
=(
5-m
5
)2,
又∵S△ABC=10,
∴S△PBM=
2(m-5)2
5
,
又∵S△PCB=2(5-m),
∴S△PCM=10-2m-
2(m-5)2
5
=-
2
5
(m-
5
2
)2+
5
2
,
∴当m=
5
2
时,△PCM的面积最大,最大值是
5
2
,
答:当m为
5
2
时,S△PCM的面积最大,这个最大值是
5
2
.
(3)故答案为:
17
2 π.
∴OA=4,OB=1,
∵二次函数y=ax2+bx+c过点A、B两点(A左B右),且分布在y轴两侧,
∴A(-4,0),B(1,0),设抛物线的解析式是y=a(x-1)(x+4),
把C(0,4)代入得:4=a(0-1)(0+4),
a=-1,
∴y=-(x-1)(x+4)=-x2-3x+4,
4a-2b+c=4×(-1)-2×(-3)+4=6,
答:4a-2b+c的值是6;
(2)解:∵AP=m,
∴PB=5-m,
∵PM∥AC,
∴△PBM∽△ABC,
∴
S△PBM
S△ABC
=(
5-m
5
)2,
又∵S△ABC=10,
∴S△PBM=
2(m-5)2
5
,
又∵S△PCB=2(5-m),
∴S△PCM=10-2m-
2(m-5)2
5
=-
2
5
(m-
5
2
)2+
5
2
,
∴当m=
5
2
时,△PCM的面积最大,最大值是
5
2
,
答:当m为
5
2
时,S△PCM的面积最大,这个最大值是
5
2
.
(3)故答案为:
17
2 π.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询