如图1,在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角

如图1,在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.... 如图1,在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由. 展开
 我来答
瀚总混社会52
推荐于2016-12-01 · 超过66用户采纳过TA的回答
知道答主
回答量:127
采纳率:100%
帮助的人:59.8万
展开全部
(1)∵△ABC中,∠C=90°,AC=3,BC=4,
∴AB=
32+42
=5,
∵CD⊥AB,
∴∠CDA=∠ACB,
又∠CAD=∠CAD,
∴Rt△ADC∽Rt△ACB,
AD
AC
=
AC
AB
,即
AD
3
=
3
5
,AD=
9
5


(2)①由于E的位置不能确定,故应分两种情况讨论:
如图A:当0<x≤AD,即0<x≤
9
5
时,
∵EF⊥AB,
∴Rt△AEF∽Rt△ACB,即
AE
AC
=
EF
BC

∵AC=3,BC=4,AE=x,
x
3
=
EF
4
,EF=
4
3
x,
S△AEF=y=
1
2
AE?EF=
1
2
x?
4
3
x=
2
3
x2
如图B:当AD<x≤AB,即
9
5
<x≤5时,
∵EF⊥AB,
∴Rt△BEF∽Rt△BCA,
EB
BC
=
EF
AC

∵AE=x,△AEF的面积为y,
5?x
4
=
EF
3

∴EF=
15?3x
4

y=
1
2
×AE×EF=
1
2
x?
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消