数列{an}中,a1=1,当n>=2时,其前项和Sn满足Sn^2=an(Sn-1/2)
2个回答
展开全部
1)Sn^2=an*(Sn-0.5)=(Sn-S(n-1))*(Sn-0.5)=Sn^2-0.5Sn-Sn*S(n-1)+0.5S(n-1)
=>S(n-1)-Sn=2Sn*S(n-1) =>1/Sn-1/S(n-1)=2
可得{1/Sn}为等差数列1/Sn=2n-1 =>Sn=1/2n-1
当n>=2时 an=Sn-S(n-1)=-2/(2n-1)(2n-3)
n=1 a1=1
2)裂项相消
bn=Sn/(2n+1)=0.5*[1/(2n-1)-1/(2n+1)]
Tn=0.5*[1-1/(2n+1)]=n/(2n+1)
=>S(n-1)-Sn=2Sn*S(n-1) =>1/Sn-1/S(n-1)=2
可得{1/Sn}为等差数列1/Sn=2n-1 =>Sn=1/2n-1
当n>=2时 an=Sn-S(n-1)=-2/(2n-1)(2n-3)
n=1 a1=1
2)裂项相消
bn=Sn/(2n+1)=0.5*[1/(2n-1)-1/(2n+1)]
Tn=0.5*[1-1/(2n+1)]=n/(2n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询