在四棱锥P-ABCD中,底面ABCD为正方形,侧棱PD⊥平面ABCD,PD=AB=2,点E、F、G是PC、PD、BC的中点。
(1)证明平面EFG⊥平面PAD,并发出D到平面EFG的距离(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明...
(1)证明平面EFG⊥平面PAD,并发出D到平面EFG的距离
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明 展开
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明 展开
1个回答
展开全部
1.∵PD⊥面ABCD
∴PD⊥CD
又CD⊥AD
AD∩PD=面PAD
∴CD⊥面PAD
又E、F是PC、PD中点
∴EF是△PCD的中位线
∴EF∥CD
∴EF⊥面PAD
又EF∈面EFG
∴面EFG⊥面PAD
作AD中点H,连FH、GH
∵GH∥CD∥EF
∴E、F、H、G四点共面
∴D到面EFG的距离即D到FH的距离
易求得为√2/2
2.作PB中点Q,则PC⊥面ADQ
证明:连EQ、ED
∵Q、E为PB、PC中点
∴QE∥BC∥AD
∴A、D、E、Q四点共面
∵PD⊥面ABCD
∴PD⊥AD
又AD⊥CD
∴AD⊥面PCD
∴AD⊥PC
∵PD=CD
又E是PC中点
∴DE⊥PC
又DE∩AD=面ADEQ
∴PC⊥面ADEQ
即PC⊥面ADQ
∴PD⊥CD
又CD⊥AD
AD∩PD=面PAD
∴CD⊥面PAD
又E、F是PC、PD中点
∴EF是△PCD的中位线
∴EF∥CD
∴EF⊥面PAD
又EF∈面EFG
∴面EFG⊥面PAD
作AD中点H,连FH、GH
∵GH∥CD∥EF
∴E、F、H、G四点共面
∴D到面EFG的距离即D到FH的距离
易求得为√2/2
2.作PB中点Q,则PC⊥面ADQ
证明:连EQ、ED
∵Q、E为PB、PC中点
∴QE∥BC∥AD
∴A、D、E、Q四点共面
∵PD⊥面ABCD
∴PD⊥AD
又AD⊥CD
∴AD⊥面PCD
∴AD⊥PC
∵PD=CD
又E是PC中点
∴DE⊥PC
又DE∩AD=面ADEQ
∴PC⊥面ADEQ
即PC⊥面ADQ
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询