已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2(1)求a3,a5;(2)
已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2(1)求a3,a5;(2)设bn=a2n+1-a2n...
已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2(1)求a3,a5;(2)设bn=a2n+1-a2n-1(n∈N*),求 {bn}的通项公式;(3)设cn=1an+1(n∈N*),Sn为数列{cn}的前n项和,若存在n使Sn>M,求M的取值范围.
展开
(1)由题意,令m=2,n=1,可得a
3=2a
2-a
1+2=6
再令m=3,n=1,可得a
5=2a
3-a
1+8=20(2分)
(2)当n∈N
*时,由已知以n+2代替m可得
a
2n+3+a
2n-1=2a
2n+1+8于是[a
2(n+1)+1-a
2(n+1)-1]-(a
2n+1-a
2n-1)=8
即b
n+1-b
n=8
所以{b
n}是公差为8的等差数列(6分)
又{b
n}是首项为b
1=a
3-a
1=6,故b
n=8n-2(8分)
(3)由(1)(2)解答可知a
2n+1-a
2n-1=8n-2
另由已知(令m=1)可得
a
n=
-(n-1)
2.那么a
n-a
n-1=
-2n+3=
-2n+3=2n+2,
故a
n=n(n-1)(12分)
故c
n=
=,得c
n=
?,
故
Sn=1?+?++?=1?,(14分)
当n∈N
*时,
1?∈[,1),由题意若存在n使
1?>M则M<1,即M的取值范围为M<1.(16分)
收起
为你推荐: