已知函数f(x)=alnx-ax-3(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图

已知函数f(x)=alnx-ax-3(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问... 已知函数f(x)=alnx-ax-3(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[m2+f′(x)]在区间(t,3)上总存在极值?(Ⅲ)当a=2时,设函数h(x)=(p?2)x?p+2ex?3,若在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,试求实数p的取值范围. 展开
 我来答
节操jKG
推荐于2016-03-09 · TA获得超过175个赞
知道答主
回答量:174
采纳率:100%
帮助的人:136万
展开全部
(Ι)当a=1时,函数f(x)=alnx-ax-3=lnx-x-3;导函数为f(x)=
1
x
?1

当0<x<1时,函数f(x)单调递增,当时x>1时,函数f(x)单调递减;
故减区间为(1,+∞),增区间为(0,1);
(Ⅱ)∵g(x)=x3+x2[
m
2
+f′(x)]=x3+(2+
m
2
)
x2-2x,
∴g‘(x)=3x2+(4+m)x-2,
∵g(x)在区间(t,3)上总存在极值,∴g‘(x)=3x2+(4+m)x-2在区间(t,3)上存在零点,
g′(t)<0
g′(3)>0.

解得?
37
3
<m<?9

所以当m∈(?
37
3
,?9)
时,对于任意的t∈[1,2]函数g(x)=x3+x2[
m
2
+f′(x)]
在区间(t,3)上总存在极值.
(Ⅲ)∴令F(x)=h(x)?f(x)=(p?2)x?
p+2e
x
?3?2lnx+2x+3=px?
p
x
?
2e
x
?2lnx

①当p≤0时,由x∈[1,e]得px-
p
x
≤0,-
2e
x
-2lnx<0.
所以,在[1,e]上不存在x0,使得h(x0)>f(x0)成立;
②当p>0时,F'(x)=
px2?2x+p+2e
x2
,∵x∈[1,e],
∴2e-2x≥0,px2+p>0,F'(x)>0在[1,e]上恒成立,故F(x)在[1,e]上单调递增.
F(x)max=F(e)=pe?
p
e
?4

故只要pe?
p
e
?4>0
,解得p>
4e
e2?1
.所以p的取值范围是(
4e
e2?1
,+∞)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式