(2011?成都)已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O经过B、D两点,过点

(2011?成都)已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与... (2011?成都)已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD= (a为大于零的常数),求BK的长:(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长. 展开
 我来答
山东驴能148
推荐于2016-12-01 · 超过57用户采纳过TA的回答
知道答主
回答量:115
采纳率:50%
帮助的人:112万
展开全部
(1)证明:∵四边形据ABCD是矩形,
∴AD=BC,
∵BK⊥AC,DH∥KB,
∴∠BKC=∠AED=90°,
∴△BKC≌△ADE,
∴AE=CK;
(2)∵AB=a,AD= =BC,
∴AC= = =
∵BK⊥AC,
∴△BKC∽△ABC,
=
=
BK=a,
∴BK= a.
(3)连接OF,

∵ABCD为矩形,
=
∴EF= ED= ×6=3,
∵F是EG的中点,
∴GF=EF=3,
∵△AFD≌△HBF,
∴HF=FE=3+6=9,
∴GH=6,
∵DH∥KB,ABCD为矩形,
∴AE 2 =EF?ED=3×6=18,
∴AE=3
∵△AED∽△HEC,
= =
∴AE= AC,
∴AC=9
则AO=

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式