已知a+b+c=0,a2+b2+c2=1,求ab+bc+ca和a4+b4+c4的值
展开全部
a+b+c=0,两边平方得:
a2+b2+c2+2ab+2bc+2ca=0,
∵a2+b2+c2=1,
∴1+2ab+2bc+2ca=0,
∴ab+bc+ca=-
;
ab+bc+ca=-
两边平方得:
a2b2+b2c2+c2a2+2ab2c+2abc2+2a2bc=
,
即a2b2+b2c2+c2a2+2abc(a+b+c)=
,
∴a2b2+b2c2+c2a2=
,
∵a2+b2+c2=1,
∴两边平方得:a4+b4+c4+2a2b2+2b2c2+2c2a2=1,
∴a4+b4+c4=1-2(a2b2+b2c2+c2a2)=1-
=
.
故答案为:-
,
.
a2+b2+c2+2ab+2bc+2ca=0,
∵a2+b2+c2=1,
∴1+2ab+2bc+2ca=0,
∴ab+bc+ca=-
1 |
2 |
ab+bc+ca=-
1 |
2 |
a2b2+b2c2+c2a2+2ab2c+2abc2+2a2bc=
1 |
4 |
即a2b2+b2c2+c2a2+2abc(a+b+c)=
1 |
4 |
∴a2b2+b2c2+c2a2=
1 |
4 |
∵a2+b2+c2=1,
∴两边平方得:a4+b4+c4+2a2b2+2b2c2+2c2a2=1,
∴a4+b4+c4=1-2(a2b2+b2c2+c2a2)=1-
1 |
2 |
1 |
2 |
故答案为:-
1 |
2 |
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询