4个回答
展开全部
∫xln(2x)dx
= ∫x(ln2)dx + ∫xlnxdx
= (1/2)x²ln2 + (1/2)∫lnxdx² + c
= (1/2)x²ln2 + (1/2)x²lnx - (1/2)∫(x²/x)dx + c
= (1/2)x²ln2 + (1/2)x²lnx - (1/2)∫xdx + c
= (1/2)x²ln2 + (1/2)x²lnx - (1/4)x² + c
= (1/4)x²[2ln2 + 2lnx - 1] + c
= (1/4)x²[2ln(2x) - 1] + c
= ∫x(ln2)dx + ∫xlnxdx
= (1/2)x²ln2 + (1/2)∫lnxdx² + c
= (1/2)x²ln2 + (1/2)x²lnx - (1/2)∫(x²/x)dx + c
= (1/2)x²ln2 + (1/2)x²lnx - (1/2)∫xdx + c
= (1/2)x²ln2 + (1/2)x²lnx - (1/4)x² + c
= (1/4)x²[2ln2 + 2lnx - 1] + c
= (1/4)x²[2ln(2x) - 1] + c
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-01-04
展开全部
∫xln2xdx=1/2∫ln2xd(x^2)=1/2x^2ln2x-1/2∫x/2dx
=1/2x^2ln2x-1/8x^2 +c
=1/2x^2ln2x-1/8x^2 +c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询