函数极值点一定是驻点吗?
7个回答
展开全部
极值点的存在范围情况有两种:1、驻点,2、导数不存在,但在该点连续的点;
判断方法有两种:1、该点临近的左右侧的导数的符号不同;2,该点二阶导数的符号
驻点和极值点的关系:1、驻点不一定是极值点,极值点也不一定是驻点;2、导函数的极值点是驻点。
说下我对驻点的意义理解(有助于形象化理解):
驻点是函数导数为0的点,也就是该点的切线水平。是两侧极可能发生函数导数符号变化的点,或者说是切线的斜率符号发生变化的点,也就是函数单调性可能发生转变的点。因而常用来划分函数单调的可能区间。
驻点可能是单调性发生变化的点,因而可能是极值点;
驻点两侧单调性不发生变化,不是极值点;
驻点两侧单调性发生变化,是极值点。(是驻点不是极值点的原因是 两侧单调性不发生变化。)
两侧单调性变化,而该点的导数不存在(如左右导数不相等)(但函数要在该点连续),也是极值点。(但不是驻点,这是 是极值点而不是驻点的原因)
判断方法有两种:1、该点临近的左右侧的导数的符号不同;2,该点二阶导数的符号
驻点和极值点的关系:1、驻点不一定是极值点,极值点也不一定是驻点;2、导函数的极值点是驻点。
说下我对驻点的意义理解(有助于形象化理解):
驻点是函数导数为0的点,也就是该点的切线水平。是两侧极可能发生函数导数符号变化的点,或者说是切线的斜率符号发生变化的点,也就是函数单调性可能发生转变的点。因而常用来划分函数单调的可能区间。
驻点可能是单调性发生变化的点,因而可能是极值点;
驻点两侧单调性不发生变化,不是极值点;
驻点两侧单调性发生变化,是极值点。(是驻点不是极值点的原因是 两侧单调性不发生变化。)
两侧单调性变化,而该点的导数不存在(如左右导数不相等)(但函数要在该点连续),也是极值点。(但不是驻点,这是 是极值点而不是驻点的原因)
展开全部
对于y=f(x),使一阶导数f'(x)=0的点是函数的驻点。
函数极值点不一定是驻点,如f(x)=|x|,在x=0 处导数不存在,当然也就不是驻点,但x=0显然是极小值点。
反之,函数的驻点但也不一定是极值点。
如f(x)=x³,f'(x)=3x²,f'(0)=0,是驻点,但不是极值点。
函数极值点不一定是驻点,如f(x)=|x|,在x=0 处导数不存在,当然也就不是驻点,但x=0显然是极小值点。
反之,函数的驻点但也不一定是极值点。
如f(x)=x³,f'(x)=3x²,f'(0)=0,是驻点,但不是极值点。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这需要分情况讨论:1、如果是一元函数的话,那么极值点就是驻点;但驻点不一定是极值点。
2、如果是多元函数的话,那么极值点不一定是驻点,驻点也不一定是极值点。
2、如果是多元函数的话,那么极值点不一定是驻点,驻点也不一定是极值点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你好,驻点不一定是极值点,这个相信你能理解,另外极值点也不一定是驻点,比如函数f(x)=|x|,根据定义容易得到(0,0)是极小值点,但是f'(0)是不存在的,也就是说(0,0)不是驻点。希望能帮助你!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不一定,不可导点也可以是极值点。如y=︱x︱在x=0点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询