数学七年级追击问题的应用题怎么解答?
3个回答
展开全部
解:同学,追及问题:追及问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线段图便可理解、分析,其等量关系式是:两者的行程差=开始时两者相距的路程;路程=速度×时间;速度= ;时间= 。例小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
解:小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用〔40×(500÷200)〕秒,所以小亮的速度是
(500-200)÷〔40×(500÷200)〕
=300÷100=3(米)
答:小亮的速度是每秒3米。
解:小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用〔40×(500÷200)〕秒,所以小亮的速度是
(500-200)÷〔40×(500÷200)〕
=300÷100=3(米)
答:小亮的速度是每秒3米。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询