已知函数f(x)对任意的x,y属于R,总有f(x)+f(y)=f(x+y)
已知函数f(x)对任意的x,y属于R,总有f(x)+f(y)=f(x+y),且当x〉0时,f(x)<0,f(1)=-2/3判断并证明f(x)在R上的单调性求f(x)在[-...
已知函数f(x)对任意的x,y属于R,总有f(x)+f(y)=f(x+y),且当x〉0时,f(x)<0,f(1)=-2/3
判断并证明f(x)在R上的单调性
求f(x)在[-3,3]上的最大值和最小值 展开
判断并证明f(x)在R上的单调性
求f(x)在[-3,3]上的最大值和最小值 展开
6个回答
展开全部
设x1>x2
f(x1)-f(x2)
=f[(x1-x2)+x2]-f(x2)
=[f(x1-x2)+f(x2)]-f(x2)
=f(x1-x2)
因为x1>x2
所以x1-x2>0
所以f(x1-x2)<0
即f(x1)-f(x2)<0
x1>x2时
f(x1)<f(x2)
f(x)在R上单调递减
f(x)在[-3,3]上的最大值为f(-3)
最小值为f(3)
f(3)=f(1)+f(2)=3f(1)=-2
因为f(0)+f(1)=f(1)所以f(0)=0
f(0)=f(-1)+f(1)
f(-1)=f(0)-f(1)=2/3
f(-3)=3f(-1)=2
即f(x)在[-3,3]上最大值为2
最小值为-2
f(x1)-f(x2)
=f[(x1-x2)+x2]-f(x2)
=[f(x1-x2)+f(x2)]-f(x2)
=f(x1-x2)
因为x1>x2
所以x1-x2>0
所以f(x1-x2)<0
即f(x1)-f(x2)<0
x1>x2时
f(x1)<f(x2)
f(x)在R上单调递减
f(x)在[-3,3]上的最大值为f(-3)
最小值为f(3)
f(3)=f(1)+f(2)=3f(1)=-2
因为f(0)+f(1)=f(1)所以f(0)=0
f(0)=f(-1)+f(1)
f(-1)=f(0)-f(1)=2/3
f(-3)=3f(-1)=2
即f(x)在[-3,3]上最大值为2
最小值为-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询