当分子最高项系数等于分母最高项系数时,极限等于系数之比。
1、数学中的极限指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”。
2、此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”。
扩展资料:
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值
2、利用恒等变形消去零因子(针对于0/0型)
3、利用无穷大与无穷小的关系求极限
4、利用无穷小的性质求极限
5、利用等价无穷小替换求极限,可以将原式化简计算
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限
2021-01-25 广告
当分子最高项系数等于分母最高项系数时,极限等于系数之比。
1、数学中的极限指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”。
2、此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”。
扩展资料:
极限性质:
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”。
4、保不等式性:设数列{xn} 与{yn}均收敛。若存在正数N ,使得当n>N时有xn≥yn。
5、和实数运算的相容性:譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。
6、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
参考资料来源:百度百科-极限
原理是,当x趋于∞的时候,x较小次方的项的值 相对于 x较高次方的项的值 来说是很小的,可以忽略不计。
当x趋向0的时候,看最小项系数比,
原理是,此时 次幂比较大的项 相对于 次幂较小的项 是高阶无穷小,可以忽略不计。