已知函数f(x)=(1+cotx)sin^2x+msin(x+π/4)sin(x-π/4).当tanα=2时,f(α)=3/5,求m的值。
3个回答
展开全部
f(x)=(1+cotx)sin^2x+msin(x+π/4)sin(x-π/4).
=(1+cotx)sin^2x+m(√2/2sinx+√2/2cosx)(√2/2sinx-√2/2cosx)
=(1+cotx)sin^2x+m(1/2sin^2x-1/2cos^2x)
=[(1+cotx)tan^2xcos^2x+1/2m(tan^2xcos^2x-cos^2x)]/(sin^2x+cos^2x)
=[(1+cotx)tan^2x+1/2m(tan^2x-1)]/(tan^2x+1)
因为当tanα=2时,cotx=1/2,f(α)=3/5,
所以[(1+1/2)*2^2+1/2m(2^2-1)]/(2^2+1)=3/5,即(6+3/2m)/5=3/5,解得m=-2
=(1+cotx)sin^2x+m(√2/2sinx+√2/2cosx)(√2/2sinx-√2/2cosx)
=(1+cotx)sin^2x+m(1/2sin^2x-1/2cos^2x)
=[(1+cotx)tan^2xcos^2x+1/2m(tan^2xcos^2x-cos^2x)]/(sin^2x+cos^2x)
=[(1+cotx)tan^2x+1/2m(tan^2x-1)]/(tan^2x+1)
因为当tanα=2时,cotx=1/2,f(α)=3/5,
所以[(1+1/2)*2^2+1/2m(2^2-1)]/(2^2+1)=3/5,即(6+3/2m)/5=3/5,解得m=-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-01-07
展开全部
cot(α)=1/2,
(cscα)^2=1+1/4=5/4,
(sinα)^2=4/5,
f(α)=(1+1/2)*(4/5)+m[(sinα)^2-(cosα)^2]/2
=6/5-(mcos2α)/2
=6/5-m*[1-2(sinα)^2]/2
=6/5-m(1-8/5)/2
=6/5+3m/10
6/5+3m/10=3/5,
m=-2.
(cscα)^2=1+1/4=5/4,
(sinα)^2=4/5,
f(α)=(1+1/2)*(4/5)+m[(sinα)^2-(cosα)^2]/2
=6/5-(mcos2α)/2
=6/5-m*[1-2(sinα)^2]/2
=6/5-m(1-8/5)/2
=6/5+3m/10
6/5+3m/10=3/5,
m=-2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询