已知圆c:x^2+y^2-2x+4y-4=0,问是否存在斜率为1的直线l,使以l被圆c截得弦AB为直径的圆经过原点,若存...
已知圆c:x^2+y^2-2x+4y-4=0,问是否存在斜率为1的直线l,使以l被圆c截得弦AB为直径的圆经过原点,若存在,写出直线l的方程,若不存在,说明理由。...
已知圆c:x^2+y^2-2x+4y-4=0,问是否存在斜率为1的直线l,使以l被圆c截得弦AB为直径的圆经过原点,若存在,写出直线l的方程,若不存在,说明理由。
展开
6个回答
展开全部
解:设直线L的方程为:y=x+b,
且直线L被圆C截得的弦AB的坐标为A(x1,y1),B(x2,y2),
联立: y=x+b
x^2-2x+y^2+4y-4=0
得 2x^2+(2+2b)x+b^2+4b-4=0
由题意 得:△=(2+2b)2-8(b2+4b-4)>0
得: -3-3√2 <b<-3+3√2
由韦达定理可得:x1+x2=-b-1,
x1x2=b^2+4b-4\2
又以AB为直径的圆过原点.
∴ x1x2+y1y2=0
化得: 2x1x2+b(x1+x2)+b^2=0
化简 b2+3b-4=0
∴ b=-4 或 b=1 合题意
所求的直线方程为:x-y-4=0 和 x-y+1=0
且直线L被圆C截得的弦AB的坐标为A(x1,y1),B(x2,y2),
联立: y=x+b
x^2-2x+y^2+4y-4=0
得 2x^2+(2+2b)x+b^2+4b-4=0
由题意 得:△=(2+2b)2-8(b2+4b-4)>0
得: -3-3√2 <b<-3+3√2
由韦达定理可得:x1+x2=-b-1,
x1x2=b^2+4b-4\2
又以AB为直径的圆过原点.
∴ x1x2+y1y2=0
化得: 2x1x2+b(x1+x2)+b^2=0
化简 b2+3b-4=0
∴ b=-4 或 b=1 合题意
所求的直线方程为:x-y-4=0 和 x-y+1=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:存在.
设存在直线l,设其方程为y=x+b,
由x^2-2x+4y-4=0
y=x+b
消去y得
2x^2+2(b+1)x+b^2+4b-4=0
设A(x1,y1),B(x2,y2)
则x1+x2=-b-1,x1x2=(b^2+4b-4)/2
y1y2=(x1+b)(x2+b)=x1x2+(x1+x2)b+b^2=(b^2+2b-4 )/2
由题意得OA⊥OB,
把b=1,-4-分别代入方程内,
均有△>0,∴b=1,-4满足条件.
∴存在满足条件的直线x-y+1=0,x-y+4=0
设存在直线l,设其方程为y=x+b,
由x^2-2x+4y-4=0
y=x+b
消去y得
2x^2+2(b+1)x+b^2+4b-4=0
设A(x1,y1),B(x2,y2)
则x1+x2=-b-1,x1x2=(b^2+4b-4)/2
y1y2=(x1+b)(x2+b)=x1x2+(x1+x2)b+b^2=(b^2+2b-4 )/2
由题意得OA⊥OB,
把b=1,-4-分别代入方程内,
均有△>0,∴b=1,-4满足条件.
∴存在满足条件的直线x-y+1=0,x-y+4=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
http://iask.sina.com.cn/b/9873184.html这个网站希望可以帮助你 哦
参考资料: http://iask.sina.com.cn/b/9873184.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询