积分区间0到π,被积函数x√(sinx)^2-(sinx)^4怎么算啊
2个回答
展开全部
consider
∫ xsinxcosx dx
=-(1/4)∫ xdcos2x
=-(1/4)xcos2x +(1/4)∫ cos2x dx
=-(1/4)xcos2x +(1/8)sin2x + C
∫(0->π) { x√[(sinx)^2-(sinx)^4] } dx
=∫(0->π/2) xsinxcosx dx - ∫(π/2->π) xsinxcosx dx
=(1/8)[ -2xcos2x + sin2x ]|(0->π/2) - (1/8)[ -2xcos2x + sin2x ]|(π/2->π)
=(1/8)(4π-1 )
∫ xsinxcosx dx
=-(1/4)∫ xdcos2x
=-(1/4)xcos2x +(1/4)∫ cos2x dx
=-(1/4)xcos2x +(1/8)sin2x + C
∫(0->π) { x√[(sinx)^2-(sinx)^4] } dx
=∫(0->π/2) xsinxcosx dx - ∫(π/2->π) xsinxcosx dx
=(1/8)[ -2xcos2x + sin2x ]|(0->π/2) - (1/8)[ -2xcos2x + sin2x ]|(π/2->π)
=(1/8)(4π-1 )
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询