已知抛物线C:y²=4x的准线与x轴交于m点,F为抛物线焦点,过点M斜率为k的直线l与抛物线交于点A.B
1个回答
展开全部
存在耐岁迅.
直线l:y=k(x+1) (k≠0)
联立y=k(x+1) ,y²=4x.消去x得.y²-4y/k+4=0
Δ=16/k²-16>0.解得k²<1且k≠0
由韦达定理:y1+y2=4/k. y1y2=4
设A(y1²/4,y1) B(y2²/4,y2) Q(y²/4,y)
向量QA=[(y1²-y²)/4,y1-y).向量QB=[(y2²-y²)/4,y2-y]
因为QA⊥QB.
所以(y1²-y²)(y2²-y²)/16+(y1-y)(y2-y)=0
<=>(y1-y)(y2-y)[1+(y1+y)(y2+y)/16]=0
因为y≠y1,y≠y2
所以1+(y1+y)(y2+y)/16=0
整理得:y²+4y/k+20=0
Δ=16/k²-80≥0.解得k²≤1/5
故k的取值范围雀判是[-√5/5,0)∪昌此(0,√5/5]
直线l:y=k(x+1) (k≠0)
联立y=k(x+1) ,y²=4x.消去x得.y²-4y/k+4=0
Δ=16/k²-16>0.解得k²<1且k≠0
由韦达定理:y1+y2=4/k. y1y2=4
设A(y1²/4,y1) B(y2²/4,y2) Q(y²/4,y)
向量QA=[(y1²-y²)/4,y1-y).向量QB=[(y2²-y²)/4,y2-y]
因为QA⊥QB.
所以(y1²-y²)(y2²-y²)/16+(y1-y)(y2-y)=0
<=>(y1-y)(y2-y)[1+(y1+y)(y2+y)/16]=0
因为y≠y1,y≠y2
所以1+(y1+y)(y2+y)/16=0
整理得:y²+4y/k+20=0
Δ=16/k²-80≥0.解得k²≤1/5
故k的取值范围雀判是[-√5/5,0)∪昌此(0,√5/5]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询