函数f(x)=ln(x的平方-ax-1)在[1,+∞]上是增函数,求a的取值范围
2个回答
展开全部
由于y = lnx 在定义域(0,+∞)上单调递增,故若f(x)在[1,+∞)上是增函数,等价于g(x) = x平方 - ax -1在[1,+∞)上恒大于0且单调递增。即
(1)g(1) > 0 (2) 二次函数g(x)的对称轴x = 1/(2a)在直线x = 1左边
即 (1) 1 - a - 1 > 0 (2) 1/(2a) <= 1 解得 a < 0
另 y = 1 + ln(x-1) (x > 1) 显然这是一个增函数,值域是R。
y - 1 = ln(x-1) 两边取以e为底的指数,e^(y-1) = x - 1, x = e^(y-1) + 1
所以反函数是y = e^(x-1) +1
(1)g(1) > 0 (2) 二次函数g(x)的对称轴x = 1/(2a)在直线x = 1左边
即 (1) 1 - a - 1 > 0 (2) 1/(2a) <= 1 解得 a < 0
另 y = 1 + ln(x-1) (x > 1) 显然这是一个增函数,值域是R。
y - 1 = ln(x-1) 两边取以e为底的指数,e^(y-1) = x - 1, x = e^(y-1) + 1
所以反函数是y = e^(x-1) +1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询