离散数学关于上界和下界,上确界和下确界的区别

 我来答
百度网友784a252
2019-03-03 · TA获得超过8990个赞
知道答主
回答量:9
采纳率:0%
帮助的人:4.1万
展开全部

离散数学关于上界和下界,上确界和下确界的区别:

一、上界和下界的区别:

在数学中,特别是在秩序理论中,在某些部分有序集合(K,≤)的子集S里面,大于或等于S的每个元素的K的那个元素,叫做上界。而下界被定义为K的元素小于或等于S的每个元素。

1、上界:是一个与偏序集有关的特殊元素,指的是偏序集中大于或等于它的子集中一切元素的元素。

2、下界:存在一个实数a和一个实数集合B,使得对∀x∈B,都有x≥a,则称a为B的下界。

二、上确界和下确界的区别:

1、上确界是一个集合的最小上界

若数集S为实数集R的子集有上界,则显然它有无穷多个上界,而其中最小的一个上界常常具有重要的作用,称它为数集S的上确界。

2、下确界是与上确界相对偶的概念,指的是一个集合的最大下界。

三、上界和上确界的区别:

上界和上确界都不一定存在,如果都存在,上界不一定唯一,但上确界一定唯一。

四、下界和下确界的区别:

下界和下确界都不一定存在,如果都存在,下界不一定唯一,但下确界一定唯一。

扩展资料:

离散数学关于上界和下界,上确界和下确界的常用理论:

1、确界的唯一性定理:

设数集有上(下)确界,则这上(下)确界是唯一的。

2、确界存在定理:

有上界的非空数集必有上确界,有下界的非空数集必有下确界。

3、单调有界数列必有极限。


参考资料来源:百度百科——上界(数学名词)

参考资料来源:百度百科——下界(数学名词)

参考资料来源:百度百科——上确界

参考资料来源:百度百科——下确界

匿名用户
2016-12-04
展开全部
“上确界”的概念是数学分析中最基本的概念。 考虑一个实数集合M. 如果有一个实数S,使得M中任何数都不超过S,那么就称S是M的一个上界。   
在所有那些上界中如果有一个最小的上界,就称为M的上确界。   
一个有界数集有无数个上界和下界,但是上确界却只有一个。

有界集合S,如果β满足以下条件   
(1)对一切x∈S,有x≤β,即β是S的上界;   
(2)对任意a<β,存在x∈S,使得x>a,即β又是S的最小上界,   
则称β为集合S的上确界,记作β=supS   
在实数理论中最基本的一条公理就是所谓的确界原理:“任何有上界(下界)的非空数集必存在上确界(下确界)”

简单的说,一个存在上界(或下界)的集合,其上界(或下界)的数量将有无数个。
比方说如果s是某个集合m的上界,即s满足m中任何数都不超过s的要求,那么很明显,s+1;s+0.5;s+2;s+2.8等等这些数也满足m中任何数都不超过s+1;s+0.5;s+2;s+2.8等等的要求,所以根据上界的定义s+1;s+0.5;s+2;s+2.8等等这些s+任意正数都是m的上界。所以是无数个。
下界也类似,如果a是某个集合m的下界,即a满足m中任何数都不小于a的要求,那么很明显,a-1,a-0.3;a-2等等这些数也满足m中任何数都不小于a-1,a-0.3;a-2等等的要求,所以a-1,a-0.3;a-2等等这些a-任何正数的数也是m的下界,所以也是无数个。

而所有上界中最小的那个,被称为上确界,那当然就只有1个了。
所有下界中,最大的那个,被称为下确界,那当然也只有1个了。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式