![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
设函数f(X)=cos(2x+π/3)+sin方x。求函数f(x)的最大值和最小正周期
2个回答
展开全部
∵f(x)=cos2xcos(π/3)-sin2xsin(π/3)+(sinx)^2
=(1/2)cos2x-(√3/2)sin2x+(sinx)^2
=(1/2)[1-2(sinx)^2]-(√3/2)sin2x+(sinx)^2
=1/2-(sinx)^2-(√3/2)sin2x+(sinx)^2
=1/2-(√3/2)sin2x。
∴当sin2x=-1时,f(x)有最大值为1/2+√3/2。 f(x)的最小正周期=2π/2=π。
=(1/2)cos2x-(√3/2)sin2x+(sinx)^2
=(1/2)[1-2(sinx)^2]-(√3/2)sin2x+(sinx)^2
=1/2-(sinx)^2-(√3/2)sin2x+(sinx)^2
=1/2-(√3/2)sin2x。
∴当sin2x=-1时,f(x)有最大值为1/2+√3/2。 f(x)的最小正周期=2π/2=π。
展开全部
f(x)=cos(2x+π/3)+sin²X
=1/2*cos2x-√3/2*sin2x+(1/2)(1-cos2x)
=1/2-√3/2*sin2x,
(1)f(x)的最大值=(1+√3)/2.
最小正周期=π.
(2)由f(c/2)=-1/4得1/2-√3/2sinC=-1/4,
∴sinC=√3/2,C为锐角,
∴cosC=1/2,
cosB=1/3,
∴sinB=2√2/3,
∴sinA=sin(B+C)=sinBcosC+cosBsinC
=(2√2+√3)/6.
=1/2*cos2x-√3/2*sin2x+(1/2)(1-cos2x)
=1/2-√3/2*sin2x,
(1)f(x)的最大值=(1+√3)/2.
最小正周期=π.
(2)由f(c/2)=-1/4得1/2-√3/2sinC=-1/4,
∴sinC=√3/2,C为锐角,
∴cosC=1/2,
cosB=1/3,
∴sinB=2√2/3,
∴sinA=sin(B+C)=sinBcosC+cosBsinC
=(2√2+√3)/6.
![](http://iknow-zhidao.bdimg.com/static/question-new/widget/value-comment/img/support_10.6efc748.gif?x-bce-process=image/format,f_auto/quality,q_80)
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询