求助,如何对两幅二值图像进行相似度匹配
展开全部
矩阵分解的方法
方法描述:将图像patch做矩阵分解,比如SVD奇异值分解和NMF非负矩阵分解等,然后再做相似度的计算。
方法思想:因为图像本身来讲就是一个矩阵,可以依靠矩阵分解获取一些更加鲁棒的特征来对图像进行相似度的计算。
基于SVD分解的方法优点:奇异值的稳定性,比例不变性,旋转不变性和压缩性。即奇异值分解是基于整体的表示,不但具有正交变换、旋转、位移、镜像映射等代数和几何上的不变性,而且具有良好的稳定性和抗噪性,广泛应用于模式识别与图像分析中。对图像进行奇异值分解的目的是得到唯一、稳定的特征描述,降低特征空间的维度,提高抗干扰能力。
基于SVD分解的方法缺点是:奇异值分解得到的奇异矢量中有负数存在,不能很好的解释其物理意义。
基于NMF分解的方法:将非负矩阵分解为可以体现图像主要信息的基矩阵与系数矩阵,并且可以对基矩阵赋予很好的解释,比如对人脸的分割,得到的基向量就是人的“眼睛”、“鼻子”等主要概念特征,源图像表示为基矩阵的加权组合,所以,NMF在人脸识别场合发挥着巨大的作用。
基于矩阵特征值计算的方法还有很多,比如Trace变换,不变矩计算等。
方法描述:将图像patch做矩阵分解,比如SVD奇异值分解和NMF非负矩阵分解等,然后再做相似度的计算。
方法思想:因为图像本身来讲就是一个矩阵,可以依靠矩阵分解获取一些更加鲁棒的特征来对图像进行相似度的计算。
基于SVD分解的方法优点:奇异值的稳定性,比例不变性,旋转不变性和压缩性。即奇异值分解是基于整体的表示,不但具有正交变换、旋转、位移、镜像映射等代数和几何上的不变性,而且具有良好的稳定性和抗噪性,广泛应用于模式识别与图像分析中。对图像进行奇异值分解的目的是得到唯一、稳定的特征描述,降低特征空间的维度,提高抗干扰能力。
基于SVD分解的方法缺点是:奇异值分解得到的奇异矢量中有负数存在,不能很好的解释其物理意义。
基于NMF分解的方法:将非负矩阵分解为可以体现图像主要信息的基矩阵与系数矩阵,并且可以对基矩阵赋予很好的解释,比如对人脸的分割,得到的基向量就是人的“眼睛”、“鼻子”等主要概念特征,源图像表示为基矩阵的加权组合,所以,NMF在人脸识别场合发挥着巨大的作用。
基于矩阵特征值计算的方法还有很多,比如Trace变换,不变矩计算等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询