展开全部
F(x) = ∫(0->x) t*e^(-t²) dt
= ∫(0->x) e^(-t²) d(t²/2)
= (1/2) * -e^(-t²):(0->x)
= (-1/2)[e^(-x²) - e^0]
= 1/2 - (1/2)e^(-x²)
F'(x) = x*e^(-x²)
F''(x) = (1-2x²)*e^(-x²)
令F'(x) = 0
x*e^(-x²) = 0
x = 0 或 [e^-(x²) = 0 (无解)]
F''(0) = (1-0)*1 = 1 > 0,所以有极小值
极小值为F(0)
= 1/2 - (1/2)e^0
= 1/2 - 1/2
= 0
= ∫(0->x) e^(-t²) d(t²/2)
= (1/2) * -e^(-t²):(0->x)
= (-1/2)[e^(-x²) - e^0]
= 1/2 - (1/2)e^(-x²)
F'(x) = x*e^(-x²)
F''(x) = (1-2x²)*e^(-x²)
令F'(x) = 0
x*e^(-x²) = 0
x = 0 或 [e^-(x²) = 0 (无解)]
F''(0) = (1-0)*1 = 1 > 0,所以有极小值
极小值为F(0)
= 1/2 - (1/2)e^0
= 1/2 - 1/2
= 0
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询