已知圆M过两点A(1,-1),B(-1,1),且圆心M在x+y-2=0上,求圆M的方程 20
已知圆M过两点A(1,-1),B(-1,1),且圆心M在x+y-2=0上,求圆M的方程设P是直线3x+4y+8=0上的动点,PA.PB是圆M的两条切线,A.B为切点,求四...
已知圆M过两点A(1,-1),B(-1,1),且圆心M在x+y-2=0上,求圆M的方程
设P是直线3x+4y+8=0上的动点,PA.PB是圆M的两条切线,A.B为切点,求四边形PAMB面积 展开
设P是直线3x+4y+8=0上的动点,PA.PB是圆M的两条切线,A.B为切点,求四边形PAMB面积 展开
2个回答
展开全部
圆心M在AB的垂直平分线上,
∵A(1,-1),B(-1,1),
∴AB的垂直平分线为y=x
圆心M在x+y-2=0上
x+y-2=0与y=x 联立得M(1,1)
r=|MA|=2
圆M的方程 为(x-1)^2+(y-1)^2=4
(2)过M向直线3x+4y+8=0引垂线,
垂足为P,此时PA、PB是圆M的两
条切线长相等且最短,四边形PAMB
面积取最小值。
M到直线3x+4y+8=0的距离
|PM|=d=|3+4+8|/√(3^2+4^2)=3
|PA|=|PB|=√(3^2-2^2)=√5
此时四边形PAMB面积
=2×1/2×|AM|×|PA|=2√5
所以四边形PAMB面积的最小值为2√5。
∵A(1,-1),B(-1,1),
∴AB的垂直平分线为y=x
圆心M在x+y-2=0上
x+y-2=0与y=x 联立得M(1,1)
r=|MA|=2
圆M的方程 为(x-1)^2+(y-1)^2=4
(2)过M向直线3x+4y+8=0引垂线,
垂足为P,此时PA、PB是圆M的两
条切线长相等且最短,四边形PAMB
面积取最小值。
M到直线3x+4y+8=0的距离
|PM|=d=|3+4+8|/√(3^2+4^2)=3
|PA|=|PB|=√(3^2-2^2)=√5
此时四边形PAMB面积
=2×1/2×|AM|×|PA|=2√5
所以四边形PAMB面积的最小值为2√5。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询