4个回答
展开全部
连接OE、DF交于M
∵AC切以DB为直径的圆O于E
∴OE⊥AC,DF⊥BC
∵AC⊥BC
∴四边形CEMF是矩形
OE//BC
∴EM=CF=y
BF=2OM=2(1-y)
∵△AOE相似于△ABC
∴AO:AB=OE:BC
∴(1+x):(2+x)=1:(y+BF)
∴y=x/(1+x)
∵AC切以DB为直径的圆O于E
∴OE⊥AC,DF⊥BC
∵AC⊥BC
∴四边形CEMF是矩形
OE//BC
∴EM=CF=y
BF=2OM=2(1-y)
∵△AOE相似于△ABC
∴AO:AB=OE:BC
∴(1+x):(2+x)=1:(y+BF)
∴y=x/(1+x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-03-26
展开全部
连接DF、OE,过点D作DG⊥AC于点G.
∵∠C=∠CGD=∠CFD=90°,
∴四边形CGDF是矩形,
∴DG=CF=y;
∵OE∥DG,
∴△AOE∽△ADG,
∴OE/AO=DG/AD,
即 1/(X+1)=Y/X,
化简可得y=X/(1+X)
∵∠C=∠CGD=∠CFD=90°,
∴四边形CGDF是矩形,
∴DG=CF=y;
∵OE∥DG,
∴△AOE∽△ADG,
∴OE/AO=DG/AD,
即 1/(X+1)=Y/X,
化简可得y=X/(1+X)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询