求教一道定积分?
3个回答
展开全部
∫(1->+∞) arctanx/x^2 dx
=-∫(1->+∞) arctanx d(1/x)
=-[arctanx/x]|(1->+∞) +∫(1->+∞) dx/[x(1+x^2)]
=-[arctanx/x]|(1->+∞) +∫(1->+∞) dx/[x(1+x^2)]
=π/4 +∫(1->+∞) [1/x -x/(1+x^2)] dx
=π/4 + [ ln|x/√(1+x^2)| ]|(1->+∞)
=π/4 - ln(1/√2)
=π/4 +(1/2) ln2
let
1/[x(1+x^2)]≡ A/x +(Bx+C)/(1+x^2)
=>
1≡ A(1+x^2) +(Bx+C)x
x=0, => A=1
coef. of x^2
A+B=0
B=-1
coef. of x, => C=0
1/[x(1+x^2)]≡ 1/x -x/(1+x^2)
=-∫(1->+∞) arctanx d(1/x)
=-[arctanx/x]|(1->+∞) +∫(1->+∞) dx/[x(1+x^2)]
=-[arctanx/x]|(1->+∞) +∫(1->+∞) dx/[x(1+x^2)]
=π/4 +∫(1->+∞) [1/x -x/(1+x^2)] dx
=π/4 + [ ln|x/√(1+x^2)| ]|(1->+∞)
=π/4 - ln(1/√2)
=π/4 +(1/2) ln2
let
1/[x(1+x^2)]≡ A/x +(Bx+C)/(1+x^2)
=>
1≡ A(1+x^2) +(Bx+C)x
x=0, => A=1
coef. of x^2
A+B=0
B=-1
coef. of x, => C=0
1/[x(1+x^2)]≡ 1/x -x/(1+x^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询