![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知x,y,z,且x+y+z=1,x^2+y^2+z^2=3,则xyz的最大值是
1个回答
展开全部
x+y=1-z x^2+y^2+z^2=3 x+y+z=1平方作差得xy+xz+yz=-1
即xy+z(x+y)=-1
代入xy+z(1-z)=-1 xy=-1-z(1-z) x+y=1-z
看成方程判别式》=0 -1《=z《=5/3
xyz=z*(-1-z(1-z)=z^3-z^2-z
学过导数的话就好了求导,判断增减-1《=z《=-1/3增 -1/3《z《1减1《=z《=5/3增
最后求得5/27
即xy+z(x+y)=-1
代入xy+z(1-z)=-1 xy=-1-z(1-z) x+y=1-z
看成方程判别式》=0 -1《=z《=5/3
xyz=z*(-1-z(1-z)=z^3-z^2-z
学过导数的话就好了求导,判断增减-1《=z《=-1/3增 -1/3《z《1减1《=z《=5/3增
最后求得5/27
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询