3个回答
展开全部
解:∵△ABC中,∠ABC=72º ,AB=AC=m,BB1是∠ABC的角平分线。
∴∠A=∠ABB1=∠B1BC=36º,∠BB1C=BCB1=72º
∴BB1=AB1=BC
∵BB1是∠ABC的角平分线,则有AB :BC=AB1 :B1C
得m :BB1=BB1 :m-BB1
解得:BB1= (-1-√5)m/2(不符舍去)
BB1= (-1+√5)m/2
同理:B1B2= (-1+√5)/2×BB1= (-1+√5)/2 ×(-1+√5)m/2=m[(-1+√5)/2]^2
B2B3= (-1+√5)/2×B1B2=m[(-1+√5)/2]^3
B3B4= (-1+√5)/2×B2B3=m[(-1+√5)/2]^4=(7-3√5)m/2
∴∠A=∠ABB1=∠B1BC=36º,∠BB1C=BCB1=72º
∴BB1=AB1=BC
∵BB1是∠ABC的角平分线,则有AB :BC=AB1 :B1C
得m :BB1=BB1 :m-BB1
解得:BB1= (-1-√5)m/2(不符舍去)
BB1= (-1+√5)m/2
同理:B1B2= (-1+√5)/2×BB1= (-1+√5)/2 ×(-1+√5)m/2=m[(-1+√5)/2]^2
B2B3= (-1+√5)/2×B1B2=m[(-1+√5)/2]^3
B3B4= (-1+√5)/2×B2B3=m[(-1+√5)/2]^4=(7-3√5)m/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询