
已知函数f(x)=sin(2x- π/6)+2cos²x-1 求单调增区间
1个回答
展开全部
f(x)=sin(2x- π/6)+2cos²x-1
=sin2xcosπ/6-cos2xsinπ/6+cos2x
=√3/2 sin2x+1/2cos2x
=sin(2x+π/6)
由2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈z
得 kπ-π/3 ≤x≤kπ+π/6,,k∈z
所以单调递增区间为
[kπ-π/3 ,kπ+π/6],k∈z
=sin2xcosπ/6-cos2xsinπ/6+cos2x
=√3/2 sin2x+1/2cos2x
=sin(2x+π/6)
由2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈z
得 kπ-π/3 ≤x≤kπ+π/6,,k∈z
所以单调递增区间为
[kπ-π/3 ,kπ+π/6],k∈z
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询