
如图AB∥CD,∠1=∠B,∠2=∠D,证明BE⊥DE
展开全部
证法1:
∵AB//CD
∴∠A+∠C=180º【平行,同旁内角互补】
∵∠1+∠B+∠A=180º
∠2+∠D+∠C=180º【三角形内角和180º】
∴∠1+∠B+∠2+∠D+(∠A+∠C)=360º
∴∠1+∠B+∠2+∠D=180º
∵∠1=∠B,∠2=∠D
∴2∠1+2∠2=180º
∴∠1+∠2=90º
∴∠BED=180º-∠1-∠2=90º
即BE⊥DE
证法2:
作EF//AB
则∠BEF=∠B
∵∠1=∠B
∴∠1=∠BEF
∵AB//CD
∴EF//CD
∴∠FED=∠D
∵∠2=∠D
∴∠2=∠FED
∵∠1+2∠+∠BEF+∠FED=180º
∴2(∠BEF+∠FED)=2∠BED=180º
∴∠BED=90º
即BE⊥DE 望采纳~~~~~~
∵AB//CD
∴∠A+∠C=180º【平行,同旁内角互补】
∵∠1+∠B+∠A=180º
∠2+∠D+∠C=180º【三角形内角和180º】
∴∠1+∠B+∠2+∠D+(∠A+∠C)=360º
∴∠1+∠B+∠2+∠D=180º
∵∠1=∠B,∠2=∠D
∴2∠1+2∠2=180º
∴∠1+∠2=90º
∴∠BED=180º-∠1-∠2=90º
即BE⊥DE
证法2:
作EF//AB
则∠BEF=∠B
∵∠1=∠B
∴∠1=∠BEF
∵AB//CD
∴EF//CD
∴∠FED=∠D
∵∠2=∠D
∴∠2=∠FED
∵∠1+2∠+∠BEF+∠FED=180º
∴2(∠BEF+∠FED)=2∠BED=180º
∴∠BED=90º
即BE⊥DE 望采纳~~~~~~
追问
谢谢你啊!

2022-08-05 广告
苏州蓝晓生物科技有限公司。标准化核心产品:公司拥有完整的琼脂糖介质、葡聚糖介质、聚甲基丙烯酸酯介质生产线,年产分离介质50000L,产品质量稳定并达到国际领先水平。核心优势:公司核心技术人员拥有近二十年不同基质的基球开发和官能化的丰富技术经...
点击进入详情页
本回答由苏州蓝晓生物科技有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询