如图,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.
(1)如果AB=8且CE/CD=1/2,求BN,AM的长。(2)若CE/CD=1/3,则AM/BN的值为____.(3)若CE/CD=1/N,则AM/BN的值为____....
(1)如果AB=8且CE/CD=1/2,求BN,AM的长。
(2)若CE/CD=1/3,则AM/BN的值为____.
(3)若CE/CD=1/N,则AM/BN的值为____. 展开
(2)若CE/CD=1/3,则AM/BN的值为____.
(3)若CE/CD=1/N,则AM/BN的值为____. 展开
5个回答
展开全部
解答:
1、AB=8,由CE/CD=1/2,∴CE=4,即E是DC中点,
设BN=x,则CN=8-x,由对称性得:NB=NE=x,
在直角△ENC中,由勾股定理得:
4²+﹙8-x﹚²=x²,解得:x=5,
设AD与FE相交于G点,由对称性得:
∠GEN=∠B=90°,FE=AB=8,
∴∠DEG+∠CEN=90°,
∴易得:∠DEG=∠CNE,∴△DEG∽△CNE,
∴DE∶CN=DG∶CE,
∴4∶3=DG∶4,∴DG=16/3,
∴AG=8-16/3=8/3,
∴FG=8-20/3=4/3,
∴由勾股定理得:EG=20/3,
∴设AM=y,则MG=8/3-y,在直角△FMG中,
由勾股定理得:y²+﹙4/3﹚²=﹙8/3-y﹚²,
解得:y=1,即AM=1。
2、由CE/CD=1/3,可以设CE=1,则DC=3,DE=2,
设BN=x,则CN=3-x,NE=x,
在直角△ENC中,由勾股定理得:
﹙3-x﹚²+1²=x²,解得:x=5/3,即BN=5/3,
同理:由相似性得:DG/2=1/3,∴DG=2/3,
∴AG=3-2/3=7/3,
∴GE=2√10/3,∴FG=3-2√10/3,
设AM=y,则MG=7/3-y,
∴y²+﹙3-2√10/3﹚²=﹙7/3-y﹚²,
解得:y=﹙6√10-12﹚/7,
∴AM/BN=﹙6√10-12/7﹚/﹙5/3﹚
=﹙18√10-36/7﹚∶5。
3、设CE=1,则DC=n,∴DE=n-1,
设BN=x,则NC=n-x,NE=x,由勾股定理得:
1²+﹙n-x﹚²=x²,
解得:x=﹙n²+1﹚/﹙2n﹚,
由相似性得:DG=2n/﹙n+1﹚,
∴AG=n-2n/﹙n+1﹚=﹙n²-n﹚/﹙n+1﹚,∴后面方法相同。你自己能完成了。
1、AB=8,由CE/CD=1/2,∴CE=4,即E是DC中点,
设BN=x,则CN=8-x,由对称性得:NB=NE=x,
在直角△ENC中,由勾股定理得:
4²+﹙8-x﹚²=x²,解得:x=5,
设AD与FE相交于G点,由对称性得:
∠GEN=∠B=90°,FE=AB=8,
∴∠DEG+∠CEN=90°,
∴易得:∠DEG=∠CNE,∴△DEG∽△CNE,
∴DE∶CN=DG∶CE,
∴4∶3=DG∶4,∴DG=16/3,
∴AG=8-16/3=8/3,
∴FG=8-20/3=4/3,
∴由勾股定理得:EG=20/3,
∴设AM=y,则MG=8/3-y,在直角△FMG中,
由勾股定理得:y²+﹙4/3﹚²=﹙8/3-y﹚²,
解得:y=1,即AM=1。
2、由CE/CD=1/3,可以设CE=1,则DC=3,DE=2,
设BN=x,则CN=3-x,NE=x,
在直角△ENC中,由勾股定理得:
﹙3-x﹚²+1²=x²,解得:x=5/3,即BN=5/3,
同理:由相似性得:DG/2=1/3,∴DG=2/3,
∴AG=3-2/3=7/3,
∴GE=2√10/3,∴FG=3-2√10/3,
设AM=y,则MG=7/3-y,
∴y²+﹙3-2√10/3﹚²=﹙7/3-y﹚²,
解得:y=﹙6√10-12﹚/7,
∴AM/BN=﹙6√10-12/7﹚/﹙5/3﹚
=﹙18√10-36/7﹚∶5。
3、设CE=1,则DC=n,∴DE=n-1,
设BN=x,则NC=n-x,NE=x,由勾股定理得:
1²+﹙n-x﹚²=x²,
解得:x=﹙n²+1﹚/﹙2n﹚,
由相似性得:DG=2n/﹙n+1﹚,
∴AG=n-2n/﹙n+1﹚=﹙n²-n﹚/﹙n+1﹚,∴后面方法相同。你自己能完成了。
展开全部
1、连结BE,则MN是BE的垂直平分线,
BN=NE,
设BN=x,
CE/CD=1/2,
CD=AB=8,
CE=4,
在RT△NCE中,
(8-x)^2+4^2=x^2,
x=5,
∴BN=5,
设AM=x,
BM=EM,
AB^2+AM^2=MD^2+DE^2,
DE=4,
MD=8-x,
8^2+x^2=(8-x)^2+4^2,
x=1,
∴AM=1,
2、CE/CD=1/3,
CE=8/3,
同前理,
BN=40/9,
AM=16/9,
∴AM/CN=2/5。
3、同上理,x^2=(8-x)^2+(8/n)^2,
x=4(1+1/n^2),
BN=4(1+1/n^2),
8^2+x^2=(8-x)^2+64(n-1)^2/n^2,
x=4(n-1)^2/n^2,
∴AM/AN=(n-1)^2/(n^2+1).
BN=NE,
设BN=x,
CE/CD=1/2,
CD=AB=8,
CE=4,
在RT△NCE中,
(8-x)^2+4^2=x^2,
x=5,
∴BN=5,
设AM=x,
BM=EM,
AB^2+AM^2=MD^2+DE^2,
DE=4,
MD=8-x,
8^2+x^2=(8-x)^2+4^2,
x=1,
∴AM=1,
2、CE/CD=1/3,
CE=8/3,
同前理,
BN=40/9,
AM=16/9,
∴AM/CN=2/5。
3、同上理,x^2=(8-x)^2+(8/n)^2,
x=4(1+1/n^2),
BN=4(1+1/n^2),
8^2+x^2=(8-x)^2+64(n-1)^2/n^2,
x=4(n-1)^2/n^2,
∴AM/AN=(n-1)^2/(n^2+1).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当
CE
CD
=
1
2
时,求
AM
BN
的值.
类比归纳:
在图(1)中,若
CE
CD
=
1
3
,则
AM
BN
的值等于
25
25
;若
CE
CD
=
1
4
,则
AM
BN
的值等于
917
917
;若
CE
CD
=
1
n
(n为整数),则
AM
BN
的值等于
(n-1)2n2+1
(n-1)2n2+1
.(用含n的式子表示)
联系拓广:
如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN,设
AB
BC
=
1
m
(m>1),
CE
CD
=
1
n
,则
AM
BN
的值等于
n2m2-2n+1n2m2+1
n2m2-2n+1n2m2+1.(用含m,n的式子表示)
CE
CD
=
1
2
时,求
AM
BN
的值.
类比归纳:
在图(1)中,若
CE
CD
=
1
3
,则
AM
BN
的值等于
25
25
;若
CE
CD
=
1
4
,则
AM
BN
的值等于
917
917
;若
CE
CD
=
1
n
(n为整数),则
AM
BN
的值等于
(n-1)2n2+1
(n-1)2n2+1
.(用含n的式子表示)
联系拓广:
如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN,设
AB
BC
=
1
m
(m>1),
CE
CD
=
1
n
,则
AM
BN
的值等于
n2m2-2n+1n2m2+1
n2m2-2n+1n2m2+1.(用含m,n的式子表示)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、AB=8,由CE/CD=1/2,∴CE=4,即E是DC中点,
设BN=x,则CN=8-x,由对称性得:NB=NE=x,
在直角△ENC中,由勾股定理得:
4²+﹙8-x﹚²=x²,解得:x=5,
设AD与FE相交于G点,由对称性得:
∠GEN=∠B=90°,FE=AB=8,
∴∠DEG+∠CEN=90°,
∴易得:∠DEG=∠CNE,∴△DEG∽△CNE,
∴DE∶CN=DG∶CE,
∴4∶3=DG∶4,∴DG=16/3,
∴AG=8-16/3=8/3,
∴FG=8-20/3=4/3,
∴由勾股定理得:EG=20/3,
∴设AM=y,则MG=8/3-y,在直角△FMG中,
由勾股定理得:y²+﹙4/3﹚²=﹙8/3-y﹚²,
解得:y=1,即AM=1。
2、由CE/CD=1/3,可以设CE=1,则DC=3,DE=2,
设BN=x,则CN=3-x,NE=x,
在直角△ENC中,由勾股定理得:
﹙3-x﹚²+1²=x²,解得:x=5/3,即BN=5/3,
同理:由相似性得:DG/2=1/3,∴DG=2/3,
∴AG=3-2/3=7/3,
∴GE=2√10/3,∴FG=3-2√10/3,
设AM=y,则MG=7/3-y,
∴y²+﹙3-2√10/3﹚²=﹙7/3-y﹚²,
解得:y=﹙6√10-12﹚/7,
∴AM/BN=﹙6√10-12/7﹚/﹙5/3﹚
=﹙18√10-36/7﹚∶5。
3、设CE=1,则DC=n,∴DE=n-1,
设BN=x,则NC=n-x,NE=x,由勾股定理得:
1²+﹙n-x﹚²=x²,
解得:x=﹙n²+1﹚/﹙2n﹚,
由相似性得:DG=2n/﹙n+1﹚,
∴AG=n-2n/﹙n+1﹚=﹙n²-n﹚/﹙n+1﹚,∴后面方法相同。
设BN=x,则CN=8-x,由对称性得:NB=NE=x,
在直角△ENC中,由勾股定理得:
4²+﹙8-x﹚²=x²,解得:x=5,
设AD与FE相交于G点,由对称性得:
∠GEN=∠B=90°,FE=AB=8,
∴∠DEG+∠CEN=90°,
∴易得:∠DEG=∠CNE,∴△DEG∽△CNE,
∴DE∶CN=DG∶CE,
∴4∶3=DG∶4,∴DG=16/3,
∴AG=8-16/3=8/3,
∴FG=8-20/3=4/3,
∴由勾股定理得:EG=20/3,
∴设AM=y,则MG=8/3-y,在直角△FMG中,
由勾股定理得:y²+﹙4/3﹚²=﹙8/3-y﹚²,
解得:y=1,即AM=1。
2、由CE/CD=1/3,可以设CE=1,则DC=3,DE=2,
设BN=x,则CN=3-x,NE=x,
在直角△ENC中,由勾股定理得:
﹙3-x﹚²+1²=x²,解得:x=5/3,即BN=5/3,
同理:由相似性得:DG/2=1/3,∴DG=2/3,
∴AG=3-2/3=7/3,
∴GE=2√10/3,∴FG=3-2√10/3,
设AM=y,则MG=7/3-y,
∴y²+﹙3-2√10/3﹚²=﹙7/3-y﹚²,
解得:y=﹙6√10-12﹚/7,
∴AM/BN=﹙6√10-12/7﹚/﹙5/3﹚
=﹙18√10-36/7﹚∶5。
3、设CE=1,则DC=n,∴DE=n-1,
设BN=x,则NC=n-x,NE=x,由勾股定理得:
1²+﹙n-x﹚²=x²,
解得:x=﹙n²+1﹚/﹙2n﹚,
由相似性得:DG=2n/﹙n+1﹚,
∴AG=n-2n/﹙n+1﹚=﹙n²-n﹚/﹙n+1﹚,∴后面方法相同。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解答:
1、AB=8,由CE/CD=1/2,∴CE=4,即E是DC中点,
设BN=x,则CN=8-x,由对称性得:NB=NE=x,
在直角△ENC中,由勾股定理得:
4²+﹙8-x﹚²=x²,解得:x=5,
设AD与FE相交于G点,由对称性得:
∠GEN=∠B=90°,FE=AB=8,
∴∠DEG+∠CEN=90°,
∴易得:∠DEG=∠CNE,∴△DEG∽△CNE,
∴DE∶CN=DG∶CE,
∴4∶3=DG∶4,∴DG=16/3,
∴AG=8-16/3=8/3,
∴FG=8-20/3=4/3,
∴由勾股定理得:EG=20/3,
∴设AM=y,则MG=8/3-y,在直角△FMG中,
由勾股定理得:y²+﹙4/3﹚²=﹙8/3-y﹚²,
解得:y=1,即AM=1。
2、由CE/CD=1/3,可以设CE=1,则DC=3,DE=2,
设BN=x,则CN=3-x,NE=x,
在直角△ENC中,由勾股定理得:
﹙3-x﹚²+1²=x²,解得:x=5/3,即BN=5/3,
同理:由相似性得:DG/2=1/3,∴DG=2/3,
∴AG=3-2/3=7/3,
∴GE=2√10/3,∴FG=3-2√10/3,
设AM=y,则MG=7/3-y,
∴y²+﹙3-2√10/3﹚²=﹙7/3-y﹚²,
解得:y=﹙6√10-12﹚/7,
∴AM/BN=﹙6√10-12/7﹚/﹙5/3﹚
=﹙18√10-36/7﹚∶5。
3、设CE=1,则DC=n,∴DE=n-1,
设BN=x,则NC=n-x,NE=x,由勾股定理得:
1²+﹙n-x﹚²=x²,
解得:x=﹙n²+1﹚/﹙2n﹚,
由相似性得:DG=2n/﹙n+1﹚,
∴AG=n-2n/﹙n+1﹚=﹙n²-n﹚/﹙n+1﹚
1、AB=8,由CE/CD=1/2,∴CE=4,即E是DC中点,
设BN=x,则CN=8-x,由对称性得:NB=NE=x,
在直角△ENC中,由勾股定理得:
4²+﹙8-x﹚²=x²,解得:x=5,
设AD与FE相交于G点,由对称性得:
∠GEN=∠B=90°,FE=AB=8,
∴∠DEG+∠CEN=90°,
∴易得:∠DEG=∠CNE,∴△DEG∽△CNE,
∴DE∶CN=DG∶CE,
∴4∶3=DG∶4,∴DG=16/3,
∴AG=8-16/3=8/3,
∴FG=8-20/3=4/3,
∴由勾股定理得:EG=20/3,
∴设AM=y,则MG=8/3-y,在直角△FMG中,
由勾股定理得:y²+﹙4/3﹚²=﹙8/3-y﹚²,
解得:y=1,即AM=1。
2、由CE/CD=1/3,可以设CE=1,则DC=3,DE=2,
设BN=x,则CN=3-x,NE=x,
在直角△ENC中,由勾股定理得:
﹙3-x﹚²+1²=x²,解得:x=5/3,即BN=5/3,
同理:由相似性得:DG/2=1/3,∴DG=2/3,
∴AG=3-2/3=7/3,
∴GE=2√10/3,∴FG=3-2√10/3,
设AM=y,则MG=7/3-y,
∴y²+﹙3-2√10/3﹚²=﹙7/3-y﹚²,
解得:y=﹙6√10-12﹚/7,
∴AM/BN=﹙6√10-12/7﹚/﹙5/3﹚
=﹙18√10-36/7﹚∶5。
3、设CE=1,则DC=n,∴DE=n-1,
设BN=x,则NC=n-x,NE=x,由勾股定理得:
1²+﹙n-x﹚²=x²,
解得:x=﹙n²+1﹚/﹙2n﹚,
由相似性得:DG=2n/﹙n+1﹚,
∴AG=n-2n/﹙n+1﹚=﹙n²-n﹚/﹙n+1﹚
参考资料: 一楼
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询