数列问题,求解
(1)等式两边除以2的n次方,得
an+1/2^n=an/2^(n-1)+1
即bn+1=bn +1,b1=a1/1=1
∴{bn}是首项为1,公差为1的等差数列
(2)bn=b1+(n-1)d=n,∴an=n*2^(n-1)
Sn=a1+a2+..an=1*2^0+2*2^1+3*2^2+.....+n*2^(n-1)
∴2Sn=1*2^1+2*2^2+.....+n*2^n
上面减下面,得-Sn=2^0+2^1+2^2+...+2^(n-1)-n*2^n
前面是首项为1,公比为2的等比数列,∴其和为2^n-1
∴Sn=n*2^n-2^n-1=(n-1)*2^n
2.(1)当n>1时,Sn-1=2^(n+1)-4
an=Sn-Sn-1=2^(n+2)-4-2^(n+1)+4=2^(n+1)
S1=a1=2^3-4=4,把n=1带入通项公式得a1=2^2=4,因此当n=1时也满足通项公式
∴an=2^(n+1)
(2)bn=an*(n+1)=(n+1)*2^(n+1)
Tn=2*2^2+3*2^3+4*2^4+....+(n+1)*2^(n+1)
2Tn= 2*2^3+3*2^4+...+n*2^(n+1)+(n+1)*2^(n+2)
∴-Tn=2^2+2^2+2^3+2^4+....+2^(n+1)-(n+1)*2^(n+2)
去掉首位两项,中间是4,8,16...即首项为4,公比为2的等比数列,套公式得其和为2^(n+2)-4
-Tn=4+2^(n+2)-4-2^(n+2)*(n+1)
∴Tn=n*2^(n+2)
3.(1)2Sn+1=(n+3)an+1-1
∴2Sn+1-2Sn=2an+1,化简得an+1/an=(n+2)/(n+1)
a2/a1=3/2
a3/a2=4/3
...
an/an-1=(n+1)/n
左边乘左边,右边乘右边,得到
an/a1=(n+1)/2
令n=1,带入题中所给等式得2S1=3a1-1,而S1=a1,∴解得a1=1
∴an=(n+1)/2
(2)1/(an*an+2)=4/(n+1)(n+3)=2*[1/(n+1)-1/(n+3)]
∴Tn=2*[1/2-1/4+1/3-1/5+...+1/(n+1)-1/(n+3)]=2*[1/2+1/3-1/(n+2)-1/(n+3)]
Tn=2*[5/6-(2n+5)/(n+2)(n+3)]=5/3-(4n+10)/(n+2)(n+3)