三阶矩阵已知三个特征值,一个特征向量,怎么求其余特征值和原矩阵?
展开全部
a1=(1,0,1)
任意取两个和a1线性无关的向量a2=(1,0,0), a3=(0,1,0),然后进行斯密特正交化
a2' = a2 - <a2,a1>/<a1,a1> * a1 = (1,0,0) - 1/2 * a1 = (1/2, 0, -1/2)
a3' = a3 - <a3,a1>/<a1,a1> a1 = (0,1,0)
根据对称矩阵不同特征值的特征向量关系a2', a3'是-1对应的特征向量
取P=(a1,a2', a3'),则P^(-1)AP = diag(1,-1,-1)
A=Pdiag(1,-1,-1)P^(-1)
扩展资料:
特征向量对应的特征值是它所乘的那个缩放因子。
特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。
线性变换的主特征向量是最大特征值对应的特征向量。
特征值的几何重次是相应特征空间的维数。
有限维向量空间上的一个线性变换的谱是其所有特征值的集合。
参考资料来源:百度百科-特征向量
黄先生
2024-12-27 广告
2024-12-27 广告
矩阵切换器就是将一路或多路视音频信号分别传输给一个或者多个显示设备,如两台电脑主机要共用一个显示器,矩阵切换器可以将两台电脑主机上的内容renyi切换到同一个或多个显示器上;迈拓维矩矩阵切换器种类齐全,性价比高,支持多种控制方式,为工程商采...
点击进入详情页
本回答由黄先生提供
展开全部
a1=(1,0,1)
任意取两个和a1线性无关的向量a2=(1,0,0), a3=(0,1,0),然后进行斯密特正交化
a2' = a2 - <a2,a1>/<a1,a1> * a1 = (1,0,0) - 1/2 * a1 = (1/2, 0, -1/2)
a3' = a3 - <a3,a1>/<a1,a1> a1 = (0,1,0)
根据对称矩阵不同特征值的特征向量关系a2', a3'是-1对应的特征向量
取P=(a1,a2', a3'),则P^(-1)AP = diag(1,-1,-1)
A=Pdiag(1,-1,-1)P^(-1)
任意取两个和a1线性无关的向量a2=(1,0,0), a3=(0,1,0),然后进行斯密特正交化
a2' = a2 - <a2,a1>/<a1,a1> * a1 = (1,0,0) - 1/2 * a1 = (1/2, 0, -1/2)
a3' = a3 - <a3,a1>/<a1,a1> a1 = (0,1,0)
根据对称矩阵不同特征值的特征向量关系a2', a3'是-1对应的特征向量
取P=(a1,a2', a3'),则P^(-1)AP = diag(1,-1,-1)
A=Pdiag(1,-1,-1)P^(-1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
注意对称矩阵的属于不同特征值的特征向量是正交的。由此可以求出属于另两个特征值的特征向量,以这三个特征向量的坐标为列构造一个矩阵P,则
P^-1AP=diag(入1,入2,入2)
由此可求出矩阵A来了。
P^-1AP=diag(入1,入2,入2)
由此可求出矩阵A来了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1=(1,0,1)
任意取两个和a1线性无关的向量a2=(1,0,0), a3=(0,1,0),然后进行斯密特正交化
a2' = a2 - <a2,a1>/<a1,a1> * a1 = (1,0,0) - 1/2 * a1 = (1/2, 0, -1/2)
a3' = a3 - <a3,a1>/<a1,a1> a1 = (0,1,0)
根据对称矩阵不同特征值的特征向量关系a2', a3'是-1对应的特征向量
取P=(a1,a2', a3'),则P^(-1)AP = diag(1,-1,-1)
A=Pdiag(1,-1,-1)P^(-1)
任意取两个和a1线性无关的向量a2=(1,0,0), a3=(0,1,0),然后进行斯密特正交化
a2' = a2 - <a2,a1>/<a1,a1> * a1 = (1,0,0) - 1/2 * a1 = (1/2, 0, -1/2)
a3' = a3 - <a3,a1>/<a1,a1> a1 = (0,1,0)
根据对称矩阵不同特征值的特征向量关系a2', a3'是-1对应的特征向量
取P=(a1,a2', a3'),则P^(-1)AP = diag(1,-1,-1)
A=Pdiag(1,-1,-1)P^(-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询