高一数学:不等式? 设a、b∈R,|a+b|>1,求证:|a|+|b|>1... 设a、b∈R,|a+b|>1,求证:|a|+|b|>1 展开 我来答 1个回答 #热议# 空调使用不当可能引发哪些疾病? 东方欲晓09 2020-08-21 · TA获得超过8625个赞 知道大有可为答主 回答量:6114 采纳率:25% 帮助的人:1591万 我也去答题访问个人页 关注 展开全部 a, b 同号,|a+b| = |a|+|b| > 1 显然成立。a, b 异号,则有|a+b|^2 = |a|^2+|b|^2-2|ab| > 1(|a|+|b|)^2 = |a|^2+|b|^2+2|ab| ≥ |a|^2+|b|^2-2|ab| > 1所以,|a|+|b| > 1 成立QED 本回答由提问者推荐 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2019-08-01 高一数学 不等式 2019-02-10 高一数学不等式计算 11 2020-03-13 高中数学不等式? 1 2007-06-11 高一数学不等式公式整理 20 2019-03-14 高中数学基本不等式 2014-08-28 高中数学不等式 5 2011-05-03 高中数学(不等式的解法) 14 2019-10-23 高中数学不等式最后一个选择? 1 更多类似问题 > 为你推荐: