直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1
直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直...
直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
求线段AE的长 展开
求线段AE的长 展开
2个回答
展开全部
先证得
△OBC≌△ABD,
∵△AOB和△CBD是等边三角形,
∴OB=AB,∠OBA=∠OAB=60°,
BC=BD,∠CBD=60°,
∴∠OBA+∠ABC=∠CBD+∠ABC
即∠OBC=∠ABD,
在△OBC和△ABD中,
{OB=AB
∠OBC=∠ABD
BC=BD,
∴△OBC≌△ABD(SAS)
∵∠BAD=∠BOC=60°,
又∵∠OAB=60°,
∴∠OAE=180°-∠OAB-∠BAD=60°,
∴Rt△OEA中,AE=2OA=2,
∴OE= 根号(2^2-1^2)= 根号3,
∴E的坐标为E(0,根号 3)
所以AE=根号(1^2+根号3^2)=根号4=2
△OBC≌△ABD,
∵△AOB和△CBD是等边三角形,
∴OB=AB,∠OBA=∠OAB=60°,
BC=BD,∠CBD=60°,
∴∠OBA+∠ABC=∠CBD+∠ABC
即∠OBC=∠ABD,
在△OBC和△ABD中,
{OB=AB
∠OBC=∠ABD
BC=BD,
∴△OBC≌△ABD(SAS)
∵∠BAD=∠BOC=60°,
又∵∠OAB=60°,
∴∠OAE=180°-∠OAB-∠BAD=60°,
∴Rt△OEA中,AE=2OA=2,
∴OE= 根号(2^2-1^2)= 根号3,
∴E的坐标为E(0,根号 3)
所以AE=根号(1^2+根号3^2)=根号4=2
追问
已知:在直角坐标系中,直线y=2x+2与x轴交于点A,与y轴交于点B.
(1)画出这个函数的图象,并直接写出A,B两点的坐标;
(2)若点C是第二象限内的点,且到x轴的距离为1,到y轴的距离为 ,请判断点C是否在这条直线上?(写出判断过程)
(3)在第(2)题中,作CD⊥x轴于D,那么在x轴上是否存在一点P,使△CDP≌△AOB?若存在,请求出点P的坐标;若不存在,请说明理由.
追答
由题设知:A(-1,0) B(0,2) C(-1/2,1)图自己画
当x=-1/2时,y=-1+2=1
所以在直线上
设P点坐标为(x0,0)
AO=1,BO=2,CD=1
若全等则:DP=2
P(-5/2,0)或P(3/2,0)
展开全部
∵△AOB和△CBD是等边三角形,
∴OB=AB,∠OBA=∠OAB=60°,
BC=BD,∠CBD=60°,
∴∠OBA+∠ABC=∠CBD+∠ABC
即∠OBC=∠ABD,
在△OBC和△ABD中,
{OB=AB
∠OBC=∠ABD
BC=BD,
∴△OBC≌△ABD(SAS)
∵∠BAD=∠BOC=60°,
又∵∠OAB=60°,
∴∠OAE=180°-∠OAB-∠BAD=60°,
∴Rt△OEA中,AE=2OA=2
∴OB=AB,∠OBA=∠OAB=60°,
BC=BD,∠CBD=60°,
∴∠OBA+∠ABC=∠CBD+∠ABC
即∠OBC=∠ABD,
在△OBC和△ABD中,
{OB=AB
∠OBC=∠ABD
BC=BD,
∴△OBC≌△ABD(SAS)
∵∠BAD=∠BOC=60°,
又∵∠OAB=60°,
∴∠OAE=180°-∠OAB-∠BAD=60°,
∴Rt△OEA中,AE=2OA=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询