在△ABC中,∠ACB=45°,点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方

在△ABC中,∠ACB=45°,点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF。(1)如果AB=AC,如图(1),且点D... 在△ABC中,∠ACB=45°,点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF。(1)如果AB=AC,如图(1),且点D在线段BC上运动,试判断线段CF与BD 之间的位置关系,并证明你的结论;(2)如果AB≠AC,如图(2),且点D在线段BC上运动,(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与直线CF相交于点P,设BC=3,CD=x,求线段CP的长。(用含x的式子表示) 展开
 我来答
雅心好温柔455
2014-08-26 · TA获得超过104个赞
知道答主
回答量:117
采纳率:50%
帮助的人:63.6万
展开全部

解:(1)CF与BD位置关系是垂直,
证明如下:如图(1)
∵AB=AC,∠ACB=45°,
∴∠ABC=45°,
由正方形ADEF得AD=AF,
 ∵∠DAF=∠BAC=90°,
∴∠DAB=∠FAC,
∴△DAB≌△FAC,
∴∠ACF=∠ABD
∴∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD;

(2)CF⊥BD,(1)中的结论成立,
理由:如图(2),
过点A作AC⊥AC交BC于点G
∴AC=AG,仿(1)可证:
△GAD≌△CAF,
∴∠ACF=∠AGD=45°,
∠BCF=∠ACB+∠ACF=90°
即CF⊥BO;
(3)过点A作AQ上BC交CB的延长线于点Q ①如图(3)点D在线段BC上运动时,
∵∠BCA=45°,
可求出AQ=CQ=4,
∴DQ =4-x,
易证△AQD∽△DCP,


 ②如图(4),点D在线段BC延长线上运动时,
∵∠BCA=45°,
可求出AQ=CQ=4,
∴DQ=4+x,
过A作AG⊥AC交CB延长线于点G,
则△AGD≌△ACF,
∴∠AGD=∠ACF,
∵∠AGD+∠ACG=90°,
∴∠ACF+∠ACG=90°,
∴CF⊥ BD,
∴△AQD∽△DCP,



推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式