已知二面角a-a-β为60°,P为二面角内一点,作PA⊥α于点A,PB⊥β于点B,若PB=2,PA=1,则点P到棱α的距

已知二面角a-a-β为60°,P为二面角内一点,作PA⊥α于点A,PB⊥β于点B,若PB=2,PA=1,则点P到棱α的距离是______.... 已知二面角a-a-β为60°,P为二面角内一点,作PA⊥α于点A,PB⊥β于点B,若PB=2,PA=1,则点P到棱α的距离是______. 展开
 我来答
手机用户05063
推荐于2016-11-25 · 超过66用户采纳过TA的回答
知道答主
回答量:124
采纳率:0%
帮助的人:155万
展开全部
解:如图所示,PA与PB确定平面γ,与l交于点E,则BE⊥l,AE⊥l,∴∠BEA即为二面角的平面角,∴∠BEA=60°,从而∠BPA=120°,
∴AB=
PA2+PB2?2PA?PBcos∠BPA

=
4+1+2
7

∴PE=2R=
AB
sin60°
 =
7
3
2
=
2
21
3

则点P到棱α的距离是
2
21
3

故答案为:
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消